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FOREWORD

This handbook has been produced by the Space Systems Division of

the Martin Company under contract NAS8-5031 with the George C. Marshall

Space Flight Center of the National Aeronautics and Space Administration.

The Lunar Flight Handbook is considered the second in a series of

volumes by various contractors, sponsored by MSFC, treating the dynamics

of space flight in a variety of aspects of interest to the mission

designer and evaluator. The primary purpose of these books is to serve

as a basic tool in preliminary mission planning. In condensed form they

provide background data and material collected through several years of

intensive studies in each space mission area, such as earth orbital

flight, lunar flight, and interplanetary flight.

Volume II, the present volume, is concerned with lunar missions.

The volume consists of three parts presented in three separate booEs.

The parts are:

Part i - Background Material

Part 2 - Lunar Mission Phases

Part 3 - Mission Planning

The Martin Company Program Manager for this project has been

Jorgen Jensen; George Townsend has been Technical Director. Fred

Martikan has had the direct responsibility for the coordination of

this volume; he has shared the responsibility for the generation of

material with Frank Santora.

Additional contributors were Robert Salinger, Donald Kraft, Thomas

Garceau, Andrew Jazwinski and Lloyd Emery. The graphical work has been

prepared by Dieter Kuhn and Elsie M. Smith. John Magnus has assisted in

preparing the handbook for publication. William Pragluski, Don Novak,

James Porter, Edward Markson, Sidney Roedel, Wade Foy and James Tyler

have made helpful suggestions during the writing of this book.

The assistance given by the Future Projects Office at MSFC and by

the MSFC contract management panel, directed by Conrad D. Swanson is

gratefully acknowledged.
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I. INTRODUCTION

The primary intent of the Lunar Flight Hand-

book is to introduce the engineer to the flight

mechanics aspects of lunar missions. In addition,

the handbook material is designed to enable the

user to design a lunar mission for any date in
this decade.

To fulfill this double purpose while presenting

new material in compact form, several guidelines
were established and followed in the selection and

arrangement of the material.

The format selected for the Lunar Flight

Handbook is somewhere between textbooks of

celestial mechanics and observational astronomy,

and the recent literature in journals and reports.

The material presented in the Handbook is in-

tended to provide the link between these two types

of publications and to provide a framework for

the published articles and reports covering spe-

cialized aspects of lunar flight.

The order of the presentation progresses

from relatively simple physical concepts to a

derivation, or tlle outline of the derivation, of

more detailed results and concepts. More im-

portant and useful results are presented analyti-

cally, and if possible graphically, while results

which depend on the vehicle configuration and

operational concepts, such as the use of track-

ing and communication equipment, have been

described in narrative form only. A large num-

ber of sketches are included in the text in order

to permit a quick grasp and easy visualization of

the concepts and techniques of lunar flight.

Frequent reference to outside material is

provided to enable the reader to trace numerical

values to their source and find references

to further material. Frequent reference is made

to material in the Orbital Flight Handbook, the

companion volume to this Handbook, since the

technical material overlaps to some extent. It

was attempted to keep the technical level and no-

tation uniform throughout the llandbook. This

was no small task if one considers that a number

of people were contributing to the Handbook di-

rectly and much outside material was reviewed,

checked and integrated into the text.

The technical material of the tiandbook is ar-

ranged into three groups:

(1) Background material. This group, con-

sisting of Chapters II, 1II and IV, gives

the results of astronomy, describes

the geometry, the environment, the

force models for trajectory calcula-

tion, and classifies lunar trajectories
and missions. In addition, since all

material in the Lunar Flight Handbook
is in the metric system of units, con-

versions to the commonly used English
system of units is given.

(2) Lunar mission phases. This group,
consisting ofEh_pters V to X, discus-

ses all possible phases of lunar flight

chronologically from earth departure

to re-entry into the earth's atmosphere

upon return from the moon. Of special

interest is the attempt to catalogue a

major portion of circumlunar and ap-

proach trajectories to the moon and

return trajectories to a degree of accu-

racy which has not so far been achieved

in the published literature.

(3) Mission planning. In the final technical

chapter of the Handbook, the previous

material is applied to the design of two
specific lunar missions to illustrate its

use in preliminary design.

The subject material of each technical chapter
and some general guidelines for use of the data

presented in the Lunar Flight Handbook follow.

Chapter II. PIIYSICAL DATA

Chapter II describes the environment of the

space vehicles, gives conversion factors between
the various systems of units and describes the

lunar exploration programs. In the first section,
the astronautical constants, or constants describ-

ing the gravitational force acting on the space ve-
hicle and the geometry of lhe cele,stiul bodws,

have been discussed. The recently published data
on astronautical constants has been summarized,

and the best values of these constants, together
with a confidence interval determined with the

Student's t distribution, have been used for all

trajectory calculations in the Handbook. Thus,

a standard and nearly consistent set of constants

based on recent data has been adopted. Future,
more accurate determinations of these astro-

nautical constants will not change any of the

graphical trajectory ciata significantly. Thus,

the Handbook will retain its value for preliminary
design purposes.

The atmospheric, meteoritic, radiative and

thermal environment of the space vehicle and the
effect of this environment on the vehicle and its

occupants are then discussed. The data on the

near-earth environment and earth-moon space
environment has been classified and summarized

with frequent reference to the Orbital Flight Hand-
book for details, while the near-moon and lunar

surface environment, as deduced from observa

tions and as it is known at the present, has been
discussed in much more detail.

Since handbook data is given in the absolute

MKS system of units, the various systems of me

chanical anti thermal units employed for trajec
tory cah:ulations as well as conversion factors

between metric, English and astrononiica] sys
tems of units are given. Much of the data is in
tabular form, but basic definitions anti funda-

mental units with common multiples anti submul-

tiples have been listed in the text to provide for

convenient conversions between the various sys-
tems of units.

The chapter continues with a review of the

current status of the U. S. lunar exploration
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program to familiarize the reader with the project

terminology and with the immense scope of the

lunar exploration task. A list of announced space

vehicle launches with lunar missions, their tra-

jectories, results and attempted experiments

completes the material of Chapter II.

Chapter III. TIlE EARTII-MOON SYSTEM

Chapter III provides some astronomical back-

ground for lunar flight. The various coordinate

systems centered at the earth or the moon and
used for describing the position of space vehicles

are introduced, and transformations between the

various moon-centered and trajectory coordinate

systems are given. A list of available lunar' maps
is also included.

The motion of a space vehicle in earth-moon

space as interpreted in the three-body and re

strieted three-body problems of astronomy is dis-
cussed. Conclusions that can be drawn from these

astronomical results in their application to ballis-

tic space-vehicle trajectories in earth-moon space

have been presented in some detail.

Since knowledge of lunar position and orienta-

tion is also required for lunar flight, brief de-

scriptions of Delaunay's Hansen's and the Hill-
Brown Iunar theories are followed by a listing

of the available lunar ephemerides and by a

method for including lunar librations in trajectory

digital computer programs.

Chapter IV. TIRAJECTO[{IE5 1N Tilt,; EAtg'F[t-"
............ NT-OXSN- S-YSTE M

This chapter introduces, in descriptive form,

the nomenclature and classification of lunar mis-

sions and trajectories as well as the determination

of the trajectories. The restricted three-body

problem perrnits the use of many types of ballistic

trajectories for lunar flights. If thrust is available
to modify these ballistic trajectories at predeter-

mined points, a wide variety of lunar missions are

possible. The most common missions have been
described and illustrated by sketches in the text.

The force models, or the physical assumptions,

underlying trajectory calculations, have been de-
scribed in considerable detail in order to show the

assumptions involved in the use of particular equa-

tions of motion for lunar trajectory calculations.

The description starts from simple two-body equa-

tions permitting closed-form solutions; it pro-

gresses through the "patching" of two-body tra-

jectories around the earth and moon in order to
obtain a complete ballistic lunar trajectory; the
restricted three-body force model is discussed

as a tool to determine trajectories; the n-bed)

force model with earth oblateness and lunar tri-

axiality is presented in detail; and the chapter
concludes with a discussion of the effects of non-

gravitational forces, such as rocket thrust, at-
mospheric drag, meteoritic drag, ,_olar radiution

pressure, electromagnetic forces, special and

general relativistic effects. In most cases the

form of the equations of motion has been given
or derived and the effect of including the non-

gravitational forces in lunar trajectories is cvalu-

ated. The description of methods for numerical

integration of these trajectories on the digital

computer round out this section.

The Voice (volume-of-influence calculated

envelopes) computation technique, which uses

a patched conic force model, and the geometry
and nomenclature, peculiar to the Voice tech-

nique have been introduced in the final section

of Chapter IV. This special treatment is neces-

sary since the particular trajectory geometry
enables the efficient cataloguing of lunar trajec-
tories to be discussed in the summary of Chap-

ter VI.

Chapt('r V, I',AtlTII I)EPAt{TURE

This is the first chapter in the chronological

description of the separate phases of a lunar
mission. The fixed translunar trajectory tech-

nique, in which the translunar trajectory has a

specified inclination to the moon's orbital plane

at injection, the variable translunar trajectory
technique, in which the i_clination of the trans-

lunar trajectory varies with the time of injection,
and the translunar injection itself are discussed.

It is demonstrated how the use of parking or-

bits during earth departure increases the period

in which space vehicle launch can take place

(i.e., the launch tolerance) and hence provides

additional flexibility for the planning of lunar

missions. During the injection phase, abort

requirements, or the requirements to return the

space vehicle to earth as quickly as possible in
the event of a malfunction, have been discussed.

Abort requirements are mentioned for each

phase of lunar flight in the Handbook since they

are important for the selection of trajectories
and vehicle hardware for manned lunar missions

and since many published articles disregard this

aspect of lunar missions.

All graphical data for specific numerical ex-

amples in the Lunar Flight ttandbook reflects

launches from Cape Canaveral, Florida, under

appropriate launch azimuth restrictions. At

present, NASA has announced plans to use this
launch site for lunar flights, and in view of the

long-range planning and expense of the launch

support equipment, these plans are likely to be

carried out. I_aunch from other sites with dif-

fcrelK la_lnch azimuth restrictions rcquirl,s

a different set of graphs since trajectories have

a strong dependence on launch site location.

('hapter VI. I,;AR'FII-TO-MOt)N "FIgANSFt'_[{

Of special note in this chapter is the cata-

logue of a large portion of circumlunar trajec-

tories to an accuracy which permits the pre-

liminary selection of lunar mission parameters--

a level of accuracy which is unique among pres-

entations of this type. Use of the Voice patched-

conic trajectory program, use of trajectory

symmetry about the moon's orbital plane as well

as a plane perpendicular to it, and use of two

equations for extending injection parameters,

enables the presentation of a major portion of the

circmnlunar trajectories launched from Cape
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Canaveral in only 83 figures. Typical compari-

s_o_ trajectories calculated by use of the

Voice technique, the restricted three-body force

model, and the n-body force model have been

given frequently throughout the Handbook in order

to illustrate the remarkable accuracy achievable

with the Voice technique.

Navigation during lunar missions has been

discussed qualitatively and quantitatively, with

examples given for a particularly useful naviga-

tion technique for position determination in cis-

lunar space. Tracking and communications, on

the other hand, have been described qualitatively,

since the actual procedures depend to a great

degree on the available equipment as well as on

the trajectory. Several techniques for determining

midcourse guidance correc{ions have been discussed

and some typical fuel requirements are also given.

Abort requirements and possible abort pro-

cedures during the translunar trajectory phase

together with abort maneuver graphs for a typical
circumlunar mission conclude the material of

Chapter VI.

Chapter VII. LUNAR ORBIT

Artificial satellites in orbits around the moon
behave in the same fashion as artificial satellites

in earth orbits. Only the astronautical constants

appearing in the equations and the magnitude of the

perturbing forces of the other celestial bodies
are different. Hence, satellite data most com-

monly used in prelir_inary design such as period,

velocity, lunar oblateness effects on the orbit,
as well as reconnaissance aspects of lunar orbits,

are given analytically and graphically, and the
relative magnitude of the various perturbing ef-

fects is presented.

The effect of finite rocket burning time on fuel

requirements for entry to and exit from lunar
orbits has been discussed, and a comparison with

Voice trajectory data is made. This supplements
the fuel requirements for orbit entry and exit

given in the trajectory catalogues of Chapters VI
and IX, which is based on an impulsive change of

velocity (infinite thrust-to-weight ratio). Finally,
lunar orbit determination schemes are described

briefly.

Chapter VIII. DESCENT TO AND ASCENT FROM
THE LUNAR SURI_ACE

In this chapter, the vehicle trajectory near
the lunar surface has been described: the need

to reduce the lunar approach velocity of the space

vehicle for most landing missions, the descent

burning and ballistic flight phases, any required

hovering or translation, landing safety boundaries

and abort during each descent or ascent phase

are covered. In each case the equations of mo-

tion, some methods of trajectory optimization

and guidance as well as typical results describe

the trajectory phase.

Chapter IX. MOON-TO-EARTH TRANSFER

This chapter gives a catalogue of trajectories

from the vicinity of the moon to the vicinity of

the earth in 90 figures. Use of symmetry and

reinterpretation of moon-to-earth trajectories
as earth-to-moon trajectories again enables a

significant extension of the catalogued data.

The catalogues of Chapters VI and IX thus include

a major portion of feasible circumlunar and

approach trajectories. Impact as well as spe-

cialized periodic trajectories have not been

catalogued since they most probably will not be

used for lunar exploration in the 1965 to 1970

time period; however, they are described and

classified in Chapter IV.

Midcourse guidance and energy requirements

during the moon-to-earth transfer phase have

been briefly discussed. The description of

guidance techniques, navigational techniques

and tracking requirements of Chapter VI applies

directly to moon-to-earth trajectories.

Chapter X. EARTtt RETURN

A description of re-entry into the earth's

atmosphere and landing at a specific site com-

pletes the chronological description of the lunar

mission phases. The problem of timing earth

return provides the introduction to the chapter

which considers two methods for re-entering

the atmosphere and landing.

The first method considers a direct entry of

the space vehicle into the earth's atmosphere

from the transearth trajectory at speeds near

the parabolic speed for earth (or earth escape
speed). Equations of motion, characteristics of

re-entry trajectories, maneuverability by use of

aerodynamic forces and various guidance tech-
niques during this supercircular re-entry are
considered.

The second method of re-entry employs a

combination of atmospheric and rocket or pure
rocket deceleration to establish a circular earth

satellite orbit prior to re-entering and landing

from circular orbital speed. The requirements

on the guidance system and the materials are

thus reduced, but a significant amount of fuel

is required for the deceleration and deorbit
maneuvers.

Chapter X1. MISSION PLANNING

Chapter X-l, provides the link between the

background and trajectory material presented

in Chapters II to X and the planning of a lunar

mission on a specific date in the period of 1965
to 1970.

The following material is necessary for the

conversion from generalized trajectory data to

specific mission dates: transformations from

tim Voice coordinat_ system to the seleno-

graphic coordinate system, the illumination of

the moon by the sun, lunar declination and
distance from the earth, and some useful em-

pirical relationships for extending catalogued
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trajectorydata. Alsoincludedaremissionplan-
ningenvelopes,or graphswhichgiveseveral
geometricaltrajectoryparametersasa function
of missionconstraintsin summaryform, thus
enablingareadypatchingof thetranslunar,lunar
orbit, andtransearthtrajectoriesintoa complete
andcontinuoustrajectoryfor themission.

Theuseof thematerialin theHandbookandthe
procedureof planninglunarmissionshasbeen

illustratedbytwosamplemissionsin thefinal
sectionof thechapter.Onemissionis amanned
lunarexplorationmissionwitha stayofthree
daysonthelunarsurface,whiletheotheris an
unmannedphotographicreconnaissancemission
of themoonlastingonemonth. In additionto
illustratingtheuseof theHandbookmaterialfor
missionplanning,thesemissionsarerepresenta-
tiveof thetypeof lunarmissionsplannedfor the
endofthis decade.
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II. PHYSICAL DATA

The purpose of this chapter is to present back-

ground data for the discussion of lunar missions--

to be more specific, the astrodynamieal constants

needed for hnar trajectories, a discussion of the

space vehicle environment, and of the absolute

MKS system of units used in the handbook, to-

gether with conversion factors to English units.

The astt'odynamical constants and near-earth en-

vironment have been discussed in the companion

volume (Chapter II, Ref. 1), and data from that

reference is given in summary form for the con-
venience of the user. Additional data needed speci-

fically for lunar missions has been included in

more detail in Sections A and B. A list of space

vehicle launches with lunar missions, their objec-

tives, and the present lunar exploration program

of the United States is given at tile end of the chap-

ter, in Suction D.

A. ASTRONAUTICAL CONSTANTS

The constants of the solar system determined
from astronomical observations are accurate

enough for the prediction of the positions of ce-
lestial bodies. However, for a successful lunar

or interplanetary mission, better values for the

astronomical unit (AU), the distances, diameters,

figures, masses, and other data concerning the

earth, moon, sun, and planets are required. As

these values should be internally consistent, they

depend on the physical model used for the tra-

jectory calculation. In addition, some indication

of the uncertainty in the values is necessary since

these constants define the ballistic trajectory,
and uncertainties in the constants are reflected

in trajectory "errors" and "miss distances. "

In recent years, several articles on astro-

nautical constants have appeared in the literature
(Hefs. 2, 3, 4, 5 to name but a few). Of these,

Refs. 2 and 3 have aimed at a standardization of

the constants for astronautical calculations (al-

though there seem to be small inconsistencies in
the data, and no indication of a "standard devia-

tion" or other 'honfidence interval" is given in

the data). Reference 4 is restricted to a statis-

tical analysis of geocentric constants, and the

constants in Ref. 5, even though internally con-

sistent, appeared too late for their evaluation
and inclusion in the handbook. Reference 5 is

reproduced in its entirety as Appendix B of Ref.

1. In addition, the calculation of the lunar ephem-
eris is based on a different set of constants,

which is given in the American Ephemeris (Itef.
6). Since more accurate values of constants will

become available in the future from observations

of space vehicles, radar echoes, and by other

means, most of these constants will be superseded

by more accurate values and smaller tolerances.

In any case, the best values available should be

used in trajectory calculations.

For the trajectories in this handbook and its

companion volume, Ref. 1, the recently published
data has been summarized, and the best values

of the constants have been used. The procedure

used for determining the means of the various
constants is as follows:

(1) Collect all recent values of a particular

constant.

(2) Assume that the various values of the

particular constant are of roughly the

same accuracy.

(3) Obtain the mean (x) and variance (2) of

this sample,

n n

X=n xi' _- =n (xi-
X

i=l i=l

2
n - 1 a_ , where n is the number

n x

of values for the constant.

(4) Throw out all values deviating from the

mean by more than one standard devia-
tion (la).

(5) Recompute the mean and use this value

as the "adjusted mean" for the constant.

The "confidence interval" of a constant is

used here to indicate that the sample interval

brackets the true mean or adjusted mean, as

computed by the procedure above, some pre-

scribed percentage of the time. For these small

samples, the confidence interval has been obtained

from the Student _s t-distribution. As this pro-

cedure has been fully discussed in Chapter II of

Ref. 1, no further details will be given here.

In the remainder of this section, the astro-

nautical constants are defined (and discussed,

when necessary), and at the end of the section,
their values and confidence levels as used in the

handbook are summarized. Since, in the broadest

sense, all celestial bodies influence the trajectory

to some degree, heliocentric and planetocentric

constants wii1 be given, together with the geo-
centric and selenocentric constants which are of

primary interest for lunar trajectories.

1. Heliocentric Constants

Planetary observations and theories of plane-

tary motion permit precise computation of the

angular position of the planets. Although angular

measurements are quite accurate, no distance

scale is readily available. Attempts to resolve

this problem have ied to the comparison of large,
unknown interplanetary distances to the largest

of the known distances available to man, the equa-

torial radius R of the earth. In the process,
(2

solar paraliax was defined as the ratio of the

earth' s equatorial radius to the mean distance

to the sun from a fictitious unperturbed planet
whose mass and sidereal period are those uti-

lized by Gauss in his computation of the solar

gravitation constant (i. e., one astronomical unit,
AU). This definition renders unnecessary the

revisions in planetary tables as more accurate
fundamental constants are made available, since

the length (in kilometers) of the astronomical
unit can be modified.

II- 1



In the broadest sense, the solar parallax is

the ratio between two sets of units: (1) the astro-

nomical set utilizing the solar mass, the astronom-

ical unit and the mean solar day (which has re-

cently been replaced by the ephemeris day), and

(2) the laboratory set, for which the absolute MKS

system of units has been adopted in this handbook.

Another important heliocentric quantity is the

value of the solar gravitational constant, p_ =
• . _2)

GM©, where G is the universal grawtatmnal con-

stant and M O is the mass of the sun. This con-

stant can be determined in both the astronomical

and the laboratory units; results from both de

terminations are given in this subsection.

In 1938 it was internationally agreed (IAU 1938)

that to maintain the Gaussian value of the solar

gravitational constant or Gaussian constant KO2

GM O as determined by Gauss from Kepler's third

law in astronomical units.

KO _ _ r@@ _
- r M S

M 0 + MG

AU3/2

0.017, 202, 098, 95 solar (1)

day

where

ros = 1 AU

r = 365.256,383,5 mean solar days

M(D = solar mass = 1

M S

M®

= ratio of earth and solar masses

= 0.000,002,819

The value of K© has nine significant figures by

this definition.

2.

The value of pQ = GM O (as K O is usually

denoted when measured in laboratory units) can

be determined directly by use of the best values

for G and M O. This yields, if we refer to Ref.
2,

PO = 1.3251 (1 ± 0.00101 x 1020 Em3/sec 2]

1/2 1010 [-m3/see2] 1/2
_O = 1"1511 (1 + 0"0005) x

The latter value, which corresponds to K O meas-

ured in laboratory units, is accurate only to the

three significant figures as compared to the nine

significant figures of the determination of K@ in
astronomical units.

It is thus advantageous to compute in the astro-

nomical system of units, converting only when

necessary. This procedure assures that the re-
suits will become more accurate as better values

for the astronomical unit are obtained and pro-

duces a much lower end figure error due to round-
off.

The sun's orbit and such auxiliary constants

as the mean obliquity of the ecliptic, its rate of

rotation, and lengths of the various years can be
found in the American Ephemeris (|_ef. 6).

2. Planetoeentrie Constants

The mass of a planet is its most important

property from the standpoint of trajectory analy-

sis; only in the vicinity of a planet will its actual

shape influence the trajectory to some degree.

From the mass and its shape, some auxiliary

quantities such as the radius of a sphere having

the equivalent volume can be derived.

Planetary and some lunar data is summarized
in tabular form at the end of this subsection.

Table 1 presents the gravitational properties of

the sun and planets--their masses and gravita-

tional constants p = GM in absolute MKS, gravi-
tational FPS, and astronomical units. In addition,

the radius of action of the particular planet with

respect to the sun is given in the same units.
The radius of action

2/5

(%
r* = top

where r = distance from sun to planet
OP

(2)

defines a spherical region around the planet p

which approximates the sphere of influence of

the planet in the dynamical system of the planet
and the sun. (For more detail, see Subsection

B-lb of Chapter IV.) The main significance of
the radius of action lies in its use in the "patch-

ing" of conic trajectories; inside the sphere of

influence, the gravitational attraction of the

planet may be neglected as a first approximation

to the trajectory, while outside the sphere of in-

fluence the gravitational attraction of the planet

may be neglected. In the case of the moon, the
tabulated radius of action is centered at the moon

and defined with respect to the earth, while in

the case of the earth-moon system it is centered

at the earth-moonbarycenter, and the combined
masses of the earth and moon are used in its

definition with respect to the sun. The last three

columns of Table 1 present the sidereal period of
revolution, its mean distance from the sun, and

the true distance of the planet from the earth on

a given date to illustrate the scale of planetary
distances and for typical calculations of planetary

gravitational attractions neat' the earth. The
data is taken from liefs. 7 and 6, respectively.

Table 2 presents the geometry of the planets.

Most celestial bodies are very nearly spherical

in shape, ttowever, an oblate elIipsoid can be

assumed as a second approximation to the plane-

tary shape, while, for the shape of the moon, a

triaxial ellipsoid has been deduced from observa-

tions. The oblate eliipsoid is defined by its equa-

torial radius I{e, its polar radius Rp, or, alter-

natively, by 1_ and its flattening, f, with
e

R tg

f = e p (3)
g

e
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TABLE 1

Gravitational Properties of the Planets

OD

Mass M

Planet 1024 k g

Mercury 0 3237 0 02232

Venus 4. 8811 O, aa45

Earth 5. 9758 0. 40947

Earth-Moon 6. 0484 0. 41444

Moon 0. (}73451 0. 0050330

Mars O. 6429 O. 04405

Jupiter 1896 7 129 97

Saturn 567 80 38. 89

Uranus 87. 132 5 970

Neptune I01 88 6 981

Pluto 5 676 0 3889

Sun 1,9866 x 106 0 13613x 106

6, 100,000 0 021, 725 0 076, 721
±65,000

407,000 0 325,581 1. 149, 78
± 1300

332,440 O, 398, 601, 5 1. 407, 64.___8
±50

328,400 O. 403,444 1. 424, 75
±25

M$
-- =
Mt I 81.357±0.010 0004,899,4 O. 017,302,___1

3,090,000 0.042,883,0 0.151,440
±12,000

1j 047 4 126 515 446. 783

±0 1

3500 37. 860, 4 133. 703

zl.7

22,800 5811,91 20 524,6

:l- 100

19,500 6 795, 75 28. 999, 0

± 2 ()C,

350,000 0 378,596 1 337,0

± 27,000

1 0000Ci 132,511 467,960

Jne erlined digits are questionable

* Solar gravitational constant is Gauss±an value

*x Period of revolution is around earth.

Gravitational Constant

i0 -9 AU3/solar

106 km 3 Isec 2 1016 ft3/sec 2 day 2 106 km

o o48,5o9 0 1117_

0 726,987 0 61696

O. 890,033 O. 92482

0. 900,847 0 92933

O. 010,939,_8 O. 066282--

0 095,753, 1 0 57763

282 493 48 141

84 538,3 54 774

12 977,4 51 755

15174,2 89 952

0 845, 364 38, 812

295,912 208.3 _ --

Radius of Action r*

109 ft AU

o 36674 0 000,747,6

2 0241 0 004, 126

3. 0342--9 0 006, 185,0

3 04898 0 006,215,1.

O. 21746o 0 000,443,3

1 8951 0 003, 86_.._3

157 943 0 321, 96

179 7I) O. 366_ 31

169 80 0 346, 13

285 28 0 581, 51

117 49 0 239, 5

Sidereal

Period of

Revolution

(w')

o 2411

0 6156

10000

O. 0748**

1. 8822

11.86

29.46

84,0

164. 8

247 7

Mean Distance

from the Sun to

the Planet (AU)

O. 387

0, 724

1. 0000

1.53

5.20

9.54

19.2

30, 1

39. 4

True Distance

from Earth (AU)

Epoch:

December 25 0, 1963

0. 8407

l. 4076

0

0.0025

2.3554

4.7246

10.4871

17,9031

31.0049

32.5967

0.9835



Table 2 also presents the radius of the sphere

having the same volume as the oblate ellipsoid,

R (Re2 Rp ) 1/3= (4)

to facilitate Keplerian orbit calculations and to

illustrate the small planetary asphericities.

Table 3 presents the circular velocity, es-

cape velocity and gravity at the surface of the

equivalent sphere (called "sea level") in metric,

English and astronomieal units, as computed

from the following equations:

Vc[rcular =

Vparabolic = Vescape (5)

go R 2

Preliminary trajectory calculations use the

spherical body assumption (i.e., that the ce-

lestial body is spherically symmetric in coneen-

trie layers} with the radius R given by Eq (4) and

the gravitational potential byU =-_, where r isr

the distance from its center. The gravitational

avattraction is given By g -- br : - 0 where the
r

negative sign denotes an attractive foree. Or-
bital data for the planets and auxiliary quantities

can be obtained from Ref. 6. Since the orbits

of planets (with the exception of Mercury and

Pluto) are very nearly circular and are near the

ecliptic plane, another common assumption for

preliminary calculations is that planetary orbits
are circular and in the ecliptic. Further data on

planets and their orbits, together with the sources
of this information, has been presented in Chap-

ter III of Kuiper (Ref. 8) and inthe references

listed in the Bibliography of background material

of the Lunar Flight Handbook.

3. Geocentrie Constants

The approximation of the earth' s shape by a

rotating oblate ellipsoid which in the interior is

symmetrie in ellipsoidai layers is quite good for
ascent and descent trajectories as well as short-
time orbits around the earth. The further as-

sumption is made that the surface of the oblate

ellipsoid ts an equipotential surface of the geo-

potential which consists of the gravitational po-

tential of the earth, US, and the potential of the
1 2 2

centrifugal force due to the rotation, _ we R_
2

cos ¢, , where coe is the rotational rate of the

earth around its axis, R0p is the local radius of

the earth, and ¢, is the geocentric latitude.

The loeal radius of the oblate elIipsoid R_ as

a function of geocentric latitude is given by

H_ 2 cos 2 _, R, 2 sin 2 _,
+ .... =I

R 2 R 2 (I - f)2
e e

which can be expressed to order f2 as

IR 6-- R e 1 - f sin 2 6 + _ sin 2 2

--_R e 1 - f sin2*, g sin 2 2 (6)

where the flattening f is defined by Eq (3). I_ is
e

the earth,s equatorial radius, 6 is the geodelic

latitude (as given on maps), and 5, is _he geo-

centric latitude. These latter two quantities are

related by

tan _, = (1 - f)2 lan_. (7)

A consistent expression for" U e is given by

2

t! e - rC - Z.l 2 _ (3 sin 2 *, - 1)

4

" )]- gr,]4 - (35 sin 4 -b, - 30 sin 2 5, + 3

(8)

where r G is the distance from the center of the

earth (the radius in lhe geographic coordinate

system) C'Me ="e is the gravitational constant

of the earth, and .12 and J4 are numerical coef-

ficients which can be expressed in terms of f, R ,
e

g_, andre. Equations (6) through (8) can be ap-

plied to any oblate planet.

The earth,s gravitational potential, %, at a

point exterior to the earth must satisfy LapIace,s
equation.

- _2[Je + O2Ue O2Ue 0

A solution of this partial differential equation by

separation of variables suggests an expansion of

Ue in terms of spherical harmonics which can be

written in the form

___._ y (I{e p m (sin,,) •

-to &o,r-;, n
_'3

_C cos mk + S sin m_,]l (10)

L_ n, m n, m

where R e now becomes the earth,s mean equa-

torial radius, X is the longitude (counted positive

to the east through 360°), Cn, m' Sn, m are nu-

merical coefficients, and P m is the associated
n

Legendre polynomial, defined in terms of the

Legendre polynomlaI P byn

m

m (x) = (1 _x2}_-- dm Ip _Pn dx m n (x
(Ii)
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TABLE 2

Geometry of the Planets

I

¢31

Equatorial Radius i R|

Planet (km) (statmi) (naut mi) (ftx 107) 1/f (km)

Mercury 2330 1448 ±6 1258 ±5 0.7644 _* 2330

±10 ±0.0032 ±10

Venus 6100 3790 ±30 3290 ±25 2.001 _* 6100

±50 ±0.016 ±50

Earth 6378.16 3963.20 3443.93 2.09257 -7 298.24 ±0.01 6356.77
±0.02 ±0.03 ±0.02 ±164 x 10 ±0.05

Earth-Moon ............

Moon*':' a 1738.57 1080.30 938.75 0. 57040 ....

±0.07 _0.04 ±0.03 ±0.00002

b 1738.31 1080.14 938.61 0.57031 -- 1737.58

±0.07 ±0.04 ±0.03 ±0.00002 ±0.07

c 1737.58 1079.68 938.22 0.57007 ....

±0.07 ±0.04 ±0.03 ±0.00002

Mars 3415 ±5 2122 ±3 1844 ±2 1.1204 75 ±12 3369 ±5

±0.0016

Jupiter 71,375 44,350 38,539 23.417 15.2 ±0.1 66,679

±50 ±30 ±25 10.016 ±50

Saturn 60.500 37,590 32,670 19.849 10.2 ± ? 54,560

±50 ±30 _25 ±0.016 ±50

Uranus 24,850 15,440 13. 420 8.153 14" ± ? 23, 070

±50 ±30 ±25 ±0.016 ±50

Neptune 25,000 15,530 13.500 8.202 58.5 ± ? 24,600

±250 _150 ±130 ±0.080 ±250

Pluto 3000 1860 1620 0.984 ....

±500 ±300 t250 ±0.16

Sun 696,500 432,800 376,100 228.51 ....

±500 ±300 ±250 ±0.16

*Taken from K. A. Ehrieke (Ref. 7)

**Moon is best presented by triaxial ellipsoid--a: toward earth

b: orthogonal to "a" and "c"

c: along axis of rotation.

Polar Radius)Rp

(stat mi) (naut mi) (ft x 107)

1448 ±6 1258 ±5 0.7644

±0.0032

3790 ±30 3290 ±25 2.001

±0.016

3949.77 3432.38 2.08555 -7
±0.03 ±0.02 ±164 x i0

1079.68 938.22 0.57007

±0.07 ±0.03 ±0.00002

2094 ±3 1819 ±2 1.1055

±0.0016

41.432 36,004 21.876

±30 ±25 ±0.016

33,900 29,470 17.990

±30 ±25 ±0.016

14,340 12,460 7.571

±30 ±25 ±0.016

15,260 13,270 8.062

±150 ±130 ±0.080

Radius of Sphere of Equivalent Volume, R

(R 3 : R: RE)

(kin)

2330

±10

6100

±5O

6371.02

±0.05

(stat mi) (naut mi) (ft x 107)

1488 ±6 1258 ±5 0.7644

±0.0032

3790 ±30 3290 ±25 2.001

_0.016

3958.77 3440.08 2.09023

±0.03 ±0.02 ±164 x 10 -7

3400 ±5 2113 ±3 1836 ±2 1.1155

±0.0016

69,774 43, 356 37,675 22,892

±50 ±30 ±25 ±0.016

58,450 36, 320 31.560 19.178

±50 ±30 ±25 ±0.016

24.240 15,060 13,090 7.953

±50 ±30 ±25 ±0.016

24.870 15,450 13, 430 8.159

±250 ±150 ±130 zO.080

3000 1860 1620 0.984

±500 ±300 ±250 :0.16

696,500 432, 800 376.100 238.51

±500 ±300 ±250 zO.16

1738.16 1080.04 938.53 0.57026

±0.07 ±0.04 ±0.03 ±0.00002



I

TABLE 3

Planetary Circular and Escape Velocities and Planetary Gravity

Circular Velocity at Sea Level Escape Velocity at Sea Level Gravity at Sea Level

(AU/solar (A U/solar

Planet {km/sec) (ft/sec) (statmi/hr) day) (km/sec) (ft/sec) (stat mi/hr) day) (cm/sec 2) (it/see 2) (statmi/hr 2) (AU/solar day 2}

Mercury 3.05361 10,018.4 6,830.73 0.00176444 4.31846 14,168.2 9.660.13 0.00249530 400.212 13o1303 32,228.9 0.199801

Venus 7.30630 23.970.8 16, 343.7 0.00422174 10.33266 33,899.8 23.113.5 0.00597043 875.261 28.7159 70,484.5 0.436964

Earth 7.909773 25,950.7 17.693.7 0.00457044 11.18610 36,699.8 25,022.6 0.00646357 982.0214 32.21855 79.081.88 0.4902632

Earth-Moon ........................

Moon 1.678900 5,508.2 3,755.59 0.00097010 2.374831 7.789.8 5.311.23 0.00137194 162.169 5.32049 13.059.38 0.0809608

Mars 3.55141 11,651.6 7,944.27 0.00205208 5.02243 16.477.8 11.234.9 0.00290207 370.951 12.1703 29,872.5 0.185193

Jupiter 42.5818 139,704 95,252.7 0.0246047 60.2196 197,571 134,707 0.0347962 2598.63 85.2569 209,267 1.29734

Saturn 25.4511 83,500.9 56,932.4 0.0147062 35.9932 118.088 80.514.5 0.0207977 1108.26 36.3601 89,247.5 0.853284

Uranus 15.4841 50,800.9 34,637.0 0.00894705 21.8978 71,843.3 48,984.1 0.0126530 989.073 32.4499 79,649.7 0.493784

Neptune 16.5308 54,234.8 36,978.3 0.00955183 23.3780 75.699.5 52,295.2 0.0135083 1098.84 36.0512 88,489.3 0.548584

Pluto 11.23(?) 36.860{_) 25,1301'¢) 0.00649(?} 15.89{?) 52,130(?) 35.540(?) 0.00918{?} 4209(?) 138.1{?) 338.900(?) 2.101{71

Sun 436.181 1,431.040 975.709 0.252035 616.853 2.023.795 1,379.860 0.356431 27.315.7 896.186 2.199,730 13.6371

Underlined digits are questionable.



A frequent variant of the form (i0) is

where

,_ co n n

US = _GG + _ Pn, m (sin _b,) •
n=l m=0

I An, m cos mk + Bn, m sin mk_t (12)

Pn, m (x) = Pn

A simplification of the expressions (10) or (11) to

axially symmetric cases removes the bothersome

time-dependence of U@ by eliminating the longi-

tude k, which is defined on the rotating earth.

The inclusion of k in U(_ requires a transforma-

tion of the potential to inertial coordinates before

it can be used in most trajectory programs. For

the axially symmetric earth, U_) can be written

(in expression which holds to inertial as well as

in rotating coordinates):

U® = rG Jn Pn (sin *, ,
n=l \rG/

(13)

where Jn = - Cn, 0' Sn, 0 = 0. Equation (8), giving

US for an oblate ellipsoidal earth, is a special

case of Eq (13) restricted to n = 2 and n = 4. The

expressions (I0), (12) and (13) were adopted as

standard notation by the IAU in 1961. Other ex-

pressions used in the literature for U$, as well

as the equivalent constants in terms of Jn' have

been catalogued in Chapter II of Ref. I.

An analytic expression for the local radius of

the earth, Re, which is consistent with the gen-

eral forms (10) and (12) of U_, is too complex to

derive. It is customary to give Re--describing

the radius of the geoid, or mean sea level sur-

face of the earth (which is also an equipotential

surface of the geopotential)--in graphical form

by superimposing the deviations of the geoid from

the oblate ellipsoid characterized by R e and f on

a world map. Since these deviations are less
than +50 meters at any point of the earth, many

trajectory calculations retain the simple form

(6) for R_, while using a form for U_ which is

adequate for the approximation of the trajectory.

This is done with the knowledge that R$ and U_
are not strictly consistent.

From long-term observations of earth satel-

lites, the values of Jn' n = 2, 3, 4, 5, 6, have been

determined relatively well, where J1 = 0 if the

center of mass and the origin of the coordinate

system coincide, and the oblateness coefficient

J2 is much larger than Jn' n__> 3. Values of

Cm, n and Sm, n together with standard deviations

have been obtained up to m, n = 8 from gravity

measurements in Ref. 4 and elsewhere. Values

forp$, J2 through J6' Re and 1/f are given in

the table of adopted constants at the end of Section

A. The oblateness coefficient J2 is, numerically,

by far the largest coefficient of Jn"

The value of _o@ is extremely accurately known

from astronomical observations. For the hand-

books, the constant value

_@ = 7. 292 115 146 x 10 -5 rad/sec (14)

has been taken, which in turn determines the pe-

riod of the earth,s rotation with respect to a fixed

equinox or the sidereal day at 86164. 0989 see.

The mean solar day, or period of the earth,s ro-

tation with respect to the mean sun, is 24 hr, or

86, 400 see.

4. Selenoeentric Constants

Selenocentric constants can be conveniently

divided into two categories--those of primary in-

terest in determining the moon,s motion, and those

determining its shape and gravitational potential.

In the first category, the constants K_ , the

lunar distance, L,, the lunar inequality as defined

byW. de Sitter (Ref. 8) and the mass ratio

M_ _ p@ have been discussed in Chapter II of

Me _1_

Ref. 1, and the numerical values are given in

the table of adopted constants at the end of this

subsection.

The moon has been captured rotationally by

the earth, which means that the relatively strong

gravitational attraction of the earth has aligned

the longest axis of the moon toward the earth in
an effect similar to the action of the earth,s grav-

itational torque on a dumbbell-shaped satellite.

This has the immediate consequence that the ro-

tational rate of the moon about its axis, ¢o_ ,

equals the sidereal mean motion of the moon
around the earth. For the Lunar Flight Handbook,

the constant value

_0_i = _$¢ = 2.661 699 484 x 10 -6 rad/see
(15)

has been adopted, fixing the length of the sidereal

lunar month and the sidereal period of revolution

of the moon about its axis at 27 d 7h 43 m 11. s55,

or 27. 321 661 4 days. The eccentricity and in-

clination of the lunar orbit as well as gravitational

torques of the sun and other planets cause the
moon to perform a "wobble motion" or librations

in its orientation with respect to the earth at a

given time in its orbit. These lunar librations
are discussed further in Chapter Ill, Section C.

Other examples of rotational capture in the solar

system include Mercury, which has been captured

by the sun, and possibly Venus, as determined by
the recent findings of the Mariner II space vehicle.

Values of r_ , -_-, and _(t)_ have been deter-

mined for the n-bo_y problem (i.e., the motion
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ofthemoonundertheattractionof thesunand
planets).If thesimplerrestrictedthree-body
problemis usedfor trajectorycalculations(spher-
ical earth,sphericalmoonin acircular orbit
aroundtheearth, masslessspacevehicle),then
thevalueofoneconstantmustbechangedfor
consistencywithKepler,sthird lawfor thisforce
model,asmentionedinSubsectionB-2 ofChap-
ter IV. It is customaryto retainthevaluesof
p$, pC and _ and use a mean earth-moon

distance of

r_ = 384, 747.2 km (16)

instead of the lunar distance r_ = 384, 402 km.

The distance FOG is also called the lunar unit (LU)

and is analogous to the astronomical unit (AU) on

the planetary scale of distances. The value of

r-_ is 0.09% larger than r-4 , but the restricted

three-body force model constants cannot be ex

pected to match observed quantities exactly, as
the force model doesn.t include all the forces

acting on the moon.

Another item of interest in connection with

the motion of the moon are the lengths of the

lunar months, which have been obtained from

Ref. 6 (data is for the epoch 1900.0):

Synodic month 29.d530589 29d12h44m02.s9

Tropical month 27.d321582 27d07h43m04.s7

Sidereal month 27.d321661 27d07h43mll.S5

Anomalistic month 27.d554551 27d13h18m33.s2

Draconitic month 27.d212220 27d05h05m35.s8

Any variation of these values since 1900 from

lunar theory and any observed difference can

safely be neglected for most astronautical cal-
culations.

Accurate orbital data for the moon, which in-

volves several additional constants, can be found

in Ref. 6. The hnar theory which has been used

in obtaining the data, the comparison of theory

with observation, and the variables given are
discussed in detail in Section C of Chapter III.

Some orbital elements--important spherical po-
sition coordinates as well as the illumination of

the moon by the sun--have been given in Chap-

ter XI up to the year 1970 to enable the planning
of lunar missions.

The second category of constants deals with

the figure of the moon and its gravitational po-

tential. The asphericity of the moon can be de-

duced from photographic measurements as well

as from physical librations (the small wobble-

motion of the moon due to gravitational torques

of the sun and planets other than earth), and the

data indicates that the moon may best be repre-

sented by a triaxial ellipsoid with semiaxes a,
b and c. The c axis is assumed to coincide with

the rotational axis of the moon, the a axis is di-

rected to the mean center point of the moon (see

Subsection A-2 of Chapter III for a definition),

and the b axis completes the right-handed

Cartesian coordinate system. Thus, the a, b,

and c axes coincide with the selenographic x S,

YS and z S axes, respectively. Define moments

of inertia of the moon I a, I b and I c about the a,

b, and c axes, and assume that the moon is

symmetric in concentric ellipsoidal shells. From

observation it has been determined that a > b > c.

Consequently, I a < I b < I c-

Very little data is available on the lunar shape.
For the manual, the data given by Alexandrov
(Ref. 9), which is based on Yakovkin.s observa-

tions, Jeffreys, calculations, and the assumptions

given in the previous paragraph, has been adopted.

The lengths of the lunar semiaxes depend on

the rigid-body motion of the moon and have been
calculated as:

Semiaxis a (km)

Semiaxis b (kin)

Semiaxis c (kin)

Forced Free

Libration Libration

1738.67 + 0.07

1738. 21 ± 0.07
1

1737.58 ± 0.07

1738.57 ± 0.07

1738.31 ± 0.07

1737.58 ± 0.07

Values for free libration, adopted by Baker, have

also been adopted for the Lunar Flight Handbook.
These values are based on the dimensionless mo-

ment-of-inertia parameters:

I -I
C a

I b
-- = 0. 000, 626, 6 ± 0. 000,002, 7 (stand-

ard error)

Ia - Ib

--I--
C

= 0. 000, 204.9 i 0. 000, 000, 9 for a
forced libration

= 0. 000, 209, 8 ± 0. 000,002, 2 for a
free libration.

These were calculated byJeffreys (Ref. 10) from
the observational data of Yakovkin. The moments

of inertia are given by

I = kM (b2 + c 2)
a

I b = kM (e 2 + a 2)

I = kM (a 2 + b 2)
e

(17)

wherek is the inhomogeneity factor, which has
the value k = 0.2 for a constant density model of

the moon and k = 0.199 for a modified compres-

sional model of the moon having a density gradient

caused by the pressure of the outer layers on the
interior (Ref. 9). For>, = 0. 199 (exact value)
the moments of inertia are:

Moment of

Inertia

I a (1034 kg-m 2)

I b (1034 kg-m 2)

I c (1034 kg-m 2)

Forced
Libration

8. 8293 ± 0.0018

8.8317 ± 0.0018

8.8349± 0.0018

Free [

Libration

8. 8298 i 0. 0018

8.8312 ± 0.0018

8.8349 ± 0.0018
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Again, the values for free libration have been

adopted in this handbook.

The surface of the hmar ellipsoid is given by

2 2 2
Xs YS Zs
--2-+ + = 1 (18)a 7 7

This expression will be transformed to spherical

coordinates R_k, the selenocentric radius of a
-f

surface point, 0_ , the selenographic latitude,

and k_, the selenographic longitude in order to

obtain an expression for R_k. Define the flatten-

ing of the lunar equator as

a - b
f, = -- = 0.00015 (19)

a

and the flattening of the lunar prime meridian as

a c

f* = = 0.00057. (20)
a

The equation of the lunar ellipsoid becomes, in

spherical coordinates,

2[c cos2 0+
sin2 ¢_ ] = 1

cos2¢_( I sin 2 k(i

(i - f,)2

(21)

Since both f, and f* are very small, it is sufficiently

accurate to solve for R@. and subsequently expand

by use of the binomial theorem, retaining only first-
order terms in f, and f*. The resulting expression
for R is

+>,
P

R0) ' (6_ . X_ ) _- a _ - f, cos2d_ (i - cos2k¢ )

- f* sin20_J (22)

The expression for the local radius of the oblate

earth--R_ to first order--can be obtained from

Eq (22) if f,--.0, f*--f, as can be verified by

comparison with Eq (6). Altitude on lunar maps

is not given with respect to the ellipsoidal surface.

w---ril-c_is defined to first order by Eq (22), and it

is not given with respect to a spherical moon, but

_iven with respect to an arbitrary spherical
lunar datum which is well below the lunar surface

and results in positive altitudes for all lunar sur-

face features.

It remains to obtain an expression for the lunar

gravitational potential U¢ corresponding to its

triaxially ellipsoidal shape and for the modified
compressional lunar model. A1exandrov (Ref. 9)

and Baker, Makemson (Ref. 10) give the lunar

potential in the following widely used form:

i i+_e rs /-U

-- 1 + (1 - 3 cos 2_¢)
r S 2- c

+ c (1 - 3 sin2¢ _)
I c

(23)

where r S is the distance from the center of the

moon (the radius in the selenographic coordinate

system), YS and z S denote components of r S in

selenographic coordinates and _ is the angle be

tween the YS axis and r S. Since the YS axis rotates

with the moon, the expression for U_ is in a non-

inertial rotating coordinate system.

The transformation from the selenographic

coordinate system x S YS zs to the lunar equatorial

system x_ y_ z¢ is given in SubsectionA 2b of

Chapter III, from where:

YS = - sin (A S +_¢ t) x_ + cos (A S+ _ t) y_

z S = z_ (24)

where A S is an arbitrary initial phase angle between

the xff and x S axes. The expression for Uff in non-

rotating lunar equatorial coordinates becomes, after

substitution of Eq (24) into Eq (23) and some mathe-
matical operations

2 2

1 z_ y_

+ 3 (_ - 2 24 cos 2 (A S + _q t)
2 r_ r t

3
X_ y_

sin 2 (A + ¢o_ t))+ 2 S

re

Ic - Ia _ zd2_)]%
3

(25)

where r{ -= r S. (The change in subscript has been

introduced in order to emphasize that the radius

has components in the lunar equatorial coordinate

system. )

Another form of the lunar gravitational poten-

tial has been given by Jeffreys (Ref. ii, p 140).

It is more useful than the forms (23) and (25)

because it allows the expression of the lunar

potential in a form analogous to Eq (I0) for the

earth,s potential, with the polar flattening of the

moon described by the numerical coefficient
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J2= - C2,0andthelunarequatorialellipiieily
bythecoefficientC2,2" This form is givenin
theselenographiccoordinalesystem,and,wi_h
a slighlchangeinnotationfor compalibilitywith
Eq(10),it is:

2 (i  sin ,,>

c2, 2 cosY, cos2 (26)

where the values of the coefficients are:

1

Ic - 2 (Is + Ib) - 200 x 10 -6
J2- 2

M{ a

Ib - la -6

C2, 2 - 2- - 27 x 10 (27)

4M{ a

The semiaxls used in Eqs (26) and (27) should be

the largest semiaxis, or a, in order to ensure

that Ull represents the potential external to the

moon. Further forms of the lunar potential use-

ful for determining the magnitudes of the earth.s

perturbation on a lunar' satellite orbit are given
in Chapter VII.

For the compressional and constant density

lunar models, the origin of the sclenographie
coordinate system is at the mass center of the

moon, so that J1 = 0. As in the case of the earth,

the oblateness coefficient J2 is numerically the

largest for the moon, with (J2)_ (Jy)q).
Oblateness effects on lunar satellite orbits will

be discussed further in Chapter VII.

The values for J2 and C2, 2 given in Eq (27)

are rather crude, so no uncertainties will bc given.
For calculations in the lunar handbook, the values

given by Krause (Ref. 5), together with his un-

certainty, will be adopted, even though his values
are slightly inconsistent with the values for a, b,

c, I a, I b, I c adopted for the handbook. Krausc

obtains :

-6 -6
J2 = 212.5 x 10 ± 2.9 x 10

-6 -6
C2, 2 = 18.8 x 10 ± 1.3 x 10 (28)

5. Summary of Adopted Constants

The constants needed for trajectory calcula-

tions which were given in this section are sum-
marized in Table 4. Note is made of the source

of each number. The values given, together wtm

the uncertainty and the confidence level have been

calculated by Townsend (Ref. 12); they reflect

our present knowledge regarding such observa-
tions and measurements. The values have been

adopted for uniformity in trajectory calculations

and in the presentation of results for the handbooks.
Better values, with smaller uncertainties and a

higher confidence level will appear in the future

and should be used in trajectory calculations as

soon as they become available. The data in the
handbook will remain valid, as any anticipated

future changes in the constants will be too small

to be reflected in the graphical data, which is

for relatively short-term trajectories. A signifi-

cant improvement in the values for selenocentric

constants is expected, however, as soon as long-
term satellite orbits around the moon can be

established and obserw_'d.

B, ENVIHONMENTAL DATA

Section A discussed and summarized the astro-

nautical constants which in effect determine the

gravitational environment of the space vehicle

Section B gives some background on other forces

and the atmospheric, radiation, meteoroid, and

thermal environment in which the sl_ace vehicle

finds itself during lunar missions.

Environmental data may be subdivided into

(1) data pertaining directly to the celestial body,
which includes the near-satellite environment of

this body, and (2) data pertaining to space between

the celestial bodies, such as cislunar space data,
interplanetary, interstellar and intergalactic

space data. The dividing line between the two

types of environment is not very well defined,

especially for celestial bodies without a dense
gaseous atmosphere, but the delineation will help
in the discussion of environmental data.

For lunar' missions near earth, cislunar space
and near-moon environmental data is required.

As near-earth data has been discussed extensively

in Chapter II of thef 1, this environment will

only be summarized and its applicability to lunar

flight discussed Near-earth data has been ac-

cumulated rapidly by earth satellites so a clearer

picture of the environment is rapidly becoming
availabIe. Much less is known about the cislunar

environment (the region beyond the earth' s at-

mosphere) and the effect of its magnetic field,

due to the small number of space probes and the

relatiw_ly shor_ _ime that these probes are in

cislunar space The effects of radiation and

micrometeoroids have been discussed quite

generally in Chapter II of Ref 1 and are also

applicable to cislunar space The bulk of the
data in this section is on the near-moon environ-

ment--the lunar surface, its appearance and
approximate thermal characteristics, together
with a brief discussion of the tenuous lunar at-

mosphere.

Much of the environmental data is of a quali-

tative nature and intended to provide a classifi-
cation and framework into which the numerous

sources and articles in this field can be placed

References giving a comprehensive survey and

providing a link between the material in this
section and the actual sources have been indicated

in order to enable the tracing of data required for

lunar flight to its source

The primary concern in this section is to

describe the space environment with very Might

mention of its effect on the trajectory, people
and materials The modification of the force

model (and hence of the trajectory) by the environ-

ment has been discussed in Section B of Chapter

IV A recent survey article by Jaffe and Rittenhouse
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TABLE 4

Adopted Constants

Quantity

General Constants

Speed of light

Universal grav constant G

Heliocentric Constants

Solar parallax

Astronomical unit

2
K

O

Planetocentric Constants

Mercury

Solar mass/mass Mercury

Equatorial radius

l/f

Venus

Solar mass/mass Venus

Equatorial radius

1/f

Earth-Moon

Solar mass/earth-moon

inass

Equatorial radius

l/f

Mars

Solar mass/mass Mars

Equatorial radius

l/f

Jupiter

Solar mass/mass Jupiter

Equatorial radius

1/f

Saturn

Solar mass ]mass Saturn

Equatorial radius

l/f

NOTE:

aBaker's value (Ref. 3)

bTownsendTs value (Igef. 12)

c
Guusslan value

dEhricke_s value (Ref. 7)

eKaula's value (Ref. 4)

fKrause' s value (Ref. 5)

Best Value Uncertainty

f299792.5 km/sec fo. 1 kin/see

3
in

6.670 x 10 -11 --_ 0. 005 x l0 ll

kg sec

a6'i 798

a149,53 x IO 6 km

Co. 2959122083

AU3/solar day 2

2
nt - i]1

kT--

b±o, 001

aao. 03

a±0" 010 -10

a6, 100, 000

a2330 km

?

a407, OO0

a61oo km (ind.

atmosphere)

?

a328, 450

a3,090, OO0

a3415

b75

al047.4

a7t, 875 km

ai5.2

a3500

a60, 500 km

al0.2

b±65,000

bel 1

?

b±1300

b±12

?

b±25

b±12,000

b±12

b±l 2

b±0.1

b±20

bio. 1

b±2.0

b±480

±?

Approximate

Confidence Level b

(%)

90

90

99+

70

70

?

90

70

9

81

81

88

80

81

50

50

70

5O

?

(continued)
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TABLE 4 (continued)

Quantity

Uranus

Solar mass/mass Uranus

Equatorial radius

l/f

Neptune

Solar mass/mass Neptune

Equatorial radius

1/f

Pluto

Solar mass/mass Pluto

Equatorial radius

i/f

Geocentric Constants

_ (tad/sec)

g (km3/sec 2)

J2

J3

J4

J5

J6

Equatorial radius (kin)

1/f

Selenocentrie Constants

_ : wq_ (rad/sec)

Lunar distance (km)

L'

Me I_
Semiaxis a (km)

b (kin)

c (km)

J2

C2,2

Best Value

a22,800

a24, 85(1

a14.0

a19, 500

a25, 000 km

a58. 5

a350, 000

a3000 km

f7.29211514B x 10 -5

e398601.5

a1082.28 x 10 -6

a-2. 30 x 10 -6

a-2. 12 x 10 -6

a-0,20 x 10 -6

a_l.0 x 10 -6

e6378. 163

e298.24

f2.661699484 x 10 -6

a384, 402 km

a6. 4385

b81. 357

a[738. 57 km

a1738. 3i km

a1737.58 km

f212.5 x 10 -6

f18.8 x 10 -6

Uncertainty

b±60

be50

i ?

bi200

b±2100

± ?

be27, O00

b±500

(exact)

±9.9

a±0. 2 x 1(> -6

a±o. 2 x 10 -6

a_o. 5 x 10 -6

aio. 1 x 10 -6

a±o. 8 x 10 -6

e±0. 021

e±o. 01

(exact)

all km

ai0. 0015

bi0.01

a±0. 07 km

a±o. 07 km

a±O. 07 km

f±2.9 x 10 -6

f±l. 3 x 10 -6

A pproximate

Confidence Level b

(%)

50

?

?

7O

5O

?

70

20

?

88

95

90

92

88

70

95

95

88

92

90

50

50

50

50

50
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(Ref. 13) discusses the behavior of materials in

space environments; the 330 references at the

end of this article may be consulted for more

detailed information.

I. Near-Earth Environment

a. Atmospheric environment

Three types of near-earth environment can be

distinguished--the atmospheric, the radiation,

and the meteoroid environment. Due to the many

large-scale and local variations in the earth' s

atmosphere, most trajectory calculations are

based on a model atmosphere which is assumed

to describe average properties of the actual at-

mosphere and to obey the perfect gas law

PM (29)
p -

R * T

and the hydrostatic differential equation

dp= -godh, (30)

where

0 : the density in kg/m 3

p = the pressure in newtons/m 2

T = the temperature in °K

_'I = the moleeular weight of air

I%* = 8. 31439 x 103 joules/kg-°K is the univer-

sal gas constant

g = the acceleration due to gravity in m/sec 2

h = the geometric altitude in meters.

The physical properties for the model atmos-

phere have been calculated under additional as-

sumptions and by use of satellite observations.

They are tabulated as a function of altitude up to

700 km as the 1961 U. S. Standard atmosphere.

This tabulation, the history of model atmospheres,

and additional background have been presented in

Chapter II of Ref. 1 and in the listed references

of that chapter. Atmospheric effects on space

vehicles with lunar mission objectives at altitudes

in excess of 700 km are negligible over the short

periods of time the vehicle is at these altitudes,

and hence no atmosphere need be assumed for

altitudes in excess of 700 kin. However, if

density data at extreme altitudes is required,

Nicolet (Ref. 14) can be used as a guide. The at-

mosphere up to 700 km can be assumed to rotate

with the same angular velocity as the earth to a

good degree of accuracy.

The 1961 U. S. Standard model atmosphere

represents average atmospheric conditions between

the maximum and minimum of the sunspot cycle.

The actual atmospheric properties that the space

vehicle encounters may differ quite considerably

from the model atmosphere. This variability is

due primarily to solar radiation and heating, gravi-
tational effects of the sun and moon or tidal motions,

as well as viscous and turbulent effects, which have

been discussed in Chapter II of Ref. i. To approxi-

mate variability for preliminary engineering de-

sign, it is sufficient, in most eases, to introduce

a certain percentage dispersion in density about
the 1961 U. S. Standard atmosphere.

The main effects of the earth' s atmosphere on

a space vehicle' s trajectory are the aerodynamic
forces, and the aerodynamic heating it produces.

The parameter relating these two effects is the

atmospheric density. Expressions for aero-

dynamic forces have been given in Subsection

B-4b of Chapter IV; they are important in de-

signing parking orbits and waiting orbits (see

Chapter V and Chapter V of Ref. 1). Aerody-
namic forces and heating define a safe re-entry
corridor for earth return, or a region of pos-

sible re-entry trajectories within the design
limits of the lunar vehicle. This aspect is dis-

cussed in Chapters IX of Ref. 1 and briefly men-

tioned in Chapter X.

b. Radiation environment

Contrary to the atmospheric effects on the

space vehicle, the effect of radiation is damage

to man, electronic equipment, and structural

components of the space vehicle. Of all the
elements in a spaee vehicle, man and semicon-

ductors have the lowest threshold of damage

from ionizing radiation. The radiation dosage

to be expected in a near-earth orbit, radiation

damage thresholds, and the shielding (which is
defined as additional structural material in the

vehicle to absorb radiation before it can reach

man and electronic equipment) have been dis-

cussed extensively in Chapter II of Ref. 1.

Most of the data on penetrating radiation in
the near-earth environment has been acquired

since 1958, when the first earth satellites and

space probes carried radiation-measurement
equipment aloft. Little penetrating radiation
reaches the surface of the earth, as the atmos-

phere represents shielding material of approxi-

mately 1 kg/cm 2, and, hence, much of the radi-

ation was not detected until satellite experiments

could be performed. In fact, many parameters

are still poorly known. The space radiation can
be classified into five general types:

(1) Van Allen radiation, consisting of high-

energy charged particles which have been

trapped in the earth' s magnetic field.
An inner and an outer belt have been

distinguished; the outer belt may extend
out as far as 10 ER (earth radii). The

particle flux of these two belts is affected

by geomagnetic storms.

{2) Solar flare radiation, consisting of high-

energy protons and electrons which are

ejected at certain times from the sun.
Half an hour or more after a large chrom-

ospheric flare, high-energy protons (and

possibly electrons) can be detected on the

earth (p 62, Ref. 15).

(3) Cosmic radiation, consisting of atomic

nuclei (mostly of hydrogen, but atomic
numbers in excess of 30 have been ob-

served) which move with velocities near

the speed of light.
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(4) Auroral radiation, consisting of electrons

and protons emitted by the sun and con-

centrated near the geomagnetic poles.

The electrons supply the energy for the

auroral light.

(5) Penetrating electromagnetic radiation of

the sun, consisting mostly of X-rays and

V-rays with energies as high as 500 kilo-

electron volts and wavelengths as short

as 0.02 A (IA = i0-i0 meter) having

been observed.

More detailed descriptions of these radiations
and recent data can be found in Ref. 15, while

Chapter II of Ref. i includes data on radiation,

the type of damage, as well as shielding require-
ments from these radiations. Table 5 summarizes

the space radiations which penetrate at least

l0 -6 kg material per square centimeter. This

table has been taken from Ref. 15, pp 70 to 71;
additional remarks and sources of the data can

be found in this reference. Tabulatecl are the

types of radiation, the particle energy and an in-
dication of the integral spectrum (the slope of the

particle flux per energy versus energy curve as a
function of energy), or differential spectrum (the

distribution of particles as a function of the enerKy
of the particle flux in an increment of energy) as

well as the particle flux itself.

In the near-earth environment, radiation haz-

ards occur mainly in the parking and/or waiting
orbit phase, in any orbital phase on earth return,

and in the near-earth portions of lunar flight,

when the vehicle velocity relative to earth is about

i0 kin/see. Radiation dosages and shielding re-

quirements during that portion have been given in

Chapter II of Ref. i. The parking and waiting
orbit altitudes in Chapter V as well as the orbital

phase during earth return in Chapter X can be
selected so as to be below the inner Van Allen belt.

Figure i illustrates the early phases of a typical

lunar mission launched from Cape Canaveral. The

doughnut-shaped inner VanAllen belt is shown,

with the proton flux indicated by eight cross sec-

tions and the geomagnetic equator shown on the

earth. The shading indicates the proton flux--

the darker the appearance of the shaded area,

the higher the flux. The illustrated trajectory
(with a relatively high parking orbit altitude)

intersects the fringes of the inner Van Allen belt

after injection, but the time spent in the re,ion

of high proton flux is very small due to the high

initial space vehicle velocities.

Solar flare radiation occurs sporadically, es-

pecially during sunspot maxima. The only pro-

tection against this type of radiation and against

cosmic and solar electromagnetic radiation is

the shielding of the space vehicle and the layout
of the equipment so as to provide maximum pro-
tection to the vulnerable men and electronic

equipment. For launches from Cape Canaveral,

the auroral radiation can be neglected, since the

parking and waiting orbits will not reach the

regions near the geomagnetic poles.

c. Meteoroid environment

Meteoroids are small astronomical bodies which

are generally in highly eccentric orbits around the

sun. They range in dimension from several reuters

(extremely rare) to dust particles or micromete-

orites as small as one micron in diameter. Be-

yond the earth's atmosphere, meteoroids may
present a hazard to space vehicles. As pointed

out by a sample calculation in Subsection B-4d of

Chapter IV, the force on the space vehicle due to

meteoroids is relatively small and can be neglected

in all but the most precise trajectory calculations.

However, of major concern is the possibility of a

meteoroid collision with the space vehicle resulting
in penetration or even puncture of the skin of the

vehicle or fuel tank. Puncture of the skin causes

a loss of pressurization or fuel, which may require
an abort of the mission.

Data concerning average meteoroid fluxes,

encounter probabilities and penetration has been

given in Chapter It of Ref. i. Also listed there

are the more common meteoroid penetration

models and a typical model for evaluating meteor-

oid effects on propellant storage vessel design

Meteoroid showers are phenomena which are

observed on earth and tend to recur annually.
They result from swarms of meteoroids which

are roughly in the same solar orbit. When a
meteoroid shower is observed on earth, all

meteoroids seem to come from the same area in

the sky, known as its "quadrant. " Data on meteor
showers observed on earth has been given on page

99 of Ref. 15. It can be assumed that many other

showers may be expected in space and that the
value of the micrometeorite flux is enhanced in

and near the meteoroid shower.

2. Cislunar Space Environment

In cislunar space, the solar flare radiation,

cosmic radiation, the penetrating electromagnetic
radiation from the sun, and the meteoroid environ-

ment must be considered. The qualitative descrip-

tion and summary of Subsection B-1 regarding these

areas apply, as does the referenced quantitative

material in Chapter 1I of Ref. 1 and in Ref. 15.

In general, increasingly less reliable data is avail-
able than for the near-earth environment. In the

list of lunar probes in Section D, some of the ve-
hicle-borne experiments and results have been
listed.

3. Lunar Environment

The figure of the moon has been discussed in

some detail in Subsection A-4 of Chapter II and

its motion in space in Section C of Chapter III.

Still to be discussed are lunar topography as de-

duced by observation of the rnoon with telescopes,

the photographs and maps which have resulted
from these observations, the thermal environment

on the hnar surface, the type of surface, and the

lunar atmosphere. Since many lunar observations

have been made by telescopes, Table 6, showing
the smallest lunar' features visible from earth

with perfect optics and under" excellent viewing

conditions (see Wilkins and Moore, Ref. 16, p

349) gives an idea of the finest lunar surface detail
that can be observed.
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TABLE 5

Penetrating Radiations in Space

Radiation

Protons

Auroral--altitudes > 100 km

Van Allen--±40 ° from in-

tegraI-invariant equator, al-

titudes from 103 to 8 x 103

krn

Solar-flare--relativistic

Solar- flare - - nonrelativis tic

Cosmic rays--interplanetary

space

Cosmic-ray ("splash") al-
bedo-- <10 Earth radii

Electrons

Auroral--from 100 to 1000

km altitudes

Van Allen radiation

Solar- flare- - magnetic lati-

tudes > 60 °

Neutrons

Cosmic-ray albedo

X- and Y-Rays

Electron bremsstrahlung

Auroral zone

Low-latitude visible aurora

Atmosphere below radiation

belt near 100 km, usually be-

tween magnetic latitudes 50
and 60 °

Van Allen belt

Nuclear Y-rays from at-

mosphere above polar caps

Solar flares

Ahove 100 km on sunlit

hemisphere

Particle Energy

or Photon Energy

Integral spectrum, 100 kev <t£ <B00

key, varies between E -1 and E -4

E -0'8 integral spectrum above 40

Mev; no radiation observed with
E > 700 Mev

E > i Bev and usually' < i0 Bev

From 30 to 300 Mev, E -1 to E -6

integral spectrum; for typical

large solar-flare event, max-in-

tensity' integral spectrum might

be represented by' 3 x 1010 E -4

protons/era 2 sec, where E is

proton energy m Mev; should not

be applied below 30 Mev

E -1"5 integral spectrum for

E > 10 Bev

1 to I0 Mev

<50 key; spectrum highly variable;

integral spectrum >4 kev between

E -I and E-2"5; I observation showed

nearly mono-energetic 6-key stream

Integral spectrum ranges from E -3

to E -6

100 Mev

E -0'9 differential spectrum for

0.1 ev < E< 100 kev, E -2 differ-

ential spectrum for 1 Mev<E <1
Bey

_E -4 integral spectrum for E> 30

kev

E -2'5 integral spectrum, _100 key

10 to 500 key; theoretical spectrum,

20 to 50 kev with an energy flux of
2

l0 -7 erg/cm -sec

E > i00 key

5 to 80 key with an energy flux of
2

10 -2 to 10 -a erg/em -sec)

500 key with an energy flux of

10 -4 erg/cm2-sec

Flux

(protons/cm2-sec)

Normally 104 to 106

with E > 100 Mev

Up to _104

Usually 10 to 102;

occasionally to _ 104

Usually 102 but oc-

casionally to _ 104

2 ± 0,3 for E>40

Mev near max of

sunspot cycle; prob-

ably' increases to _5

near sunspot min

1 near top of at-

mosphere

(electrons/cm2-sec)

Up to 1011 to 1013

average _105 to 10 7

Up to _108 for E >20

kov

Probably < 102

2
(neutrons/era -sec)

(photons/cm2-sec)

10 to 103 above ab-

sorbing atmosphere

l03 to 105

_104

_i03 initially
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TABLE 6

Smallest Lunar Features Visible from

Earth Assuming Perfect Optics and

Excellent Viewing Conditions

However, the necessary excellence of the view-

ing conditions can be illustrated by the fact that

photographs have not shown craters less than 1

km in diameter on the moon,and hence visual ob-

servations are the primary source for small de-

tails on the lunar surface.

a. Lunar topography

About 100,000 formations on the surface of the
moon have been described. In order to discuss

these formations, the nomenclature in general
use for lunar features is introduced in this sub-

section. The problem of classification has been

taken up by Blagg and Saunders (Hcf. 17) and

Blagg and MUller (Ref. 18) for those wishing

more detail, and another system has been pro-

posed by Bobrovnikoff (Ref. 19), which is
claimed to be more detailed than those of Refs.
17 and 18.

The moon as viewed from earth is characterized

by light and dark areas. In general, the lighter

the appearance of the lunar surface, the l_igher its
elevation.

The dark areas are called "maria, " or' seas.

They are, in general, low plains with some small

irregularities (compare the surface elevation con-
tours as given on the USAF lunar aeronautical

charts, one of which is reproduced as Fig. 2 in

the present chapter). The term "maria _' is re-

stricted to larger areas. The terms "lacus"

(lake) and "sinus" (bay) are applied to smaller
dark features on the lunar surface, while the

term "palus" (marsh) describes regions of inter-
mediate coloration.

The boundaries between the dark maria and the

lighter-colored "continents" and "mountains" are

generally quite sharp. The continents have not

been given names, except for a few "capes _' which

jut out into the maria.

Mountains on the moon usually are named after
terrestrial mountains or after scientists; smaller

mountains are designated by suffixing a smai1

Greek letter to the name of a large mountain in

their vicinity, i.e., Stadius _. They occur as
"chain mountains" in mountain ranges, "ridges, "

"cellular ring formations" or "domes, " which are

small, rounded mountains. The vertical relief of

the lunar surface can be determined in two steps:

(1) Determine the relative height by measur-

ing the length of a mountain' s shadow (a

technique which is quite accurate as long

as there are mountains in the particular

region of the moon by determining the

altitudes by scanning the photographic

negative of the moon with a photometer

and noting the brightness (photometric

method), by making direct measurement

at or near the limb, or by other methods.

(2) Determine absolute heights by measuring

the selenographic locations of these points

very accurately and correcting for the

projection and the refraction of the earth' s

atmosphere.

For more detail, Fielder (Ref. 20) can be con-

suited. From these observations, the vertical re-

lief of the lunar surface has been found to be high.

Some peaks near the lunar south pole exceed an

altitude of 9000 meters above the neighboring val-

leys. This compares with an elevation of 12,000

meters of the Island of Mindanao above the Philip-

pine trench on earth, which has almost four times

the radius of the moon. The slopes are usually

gentle, with angles less than those on earth, tIow-

ever, in the Jura mountains, slopes average as
much as 45 ° . The maximum elevation in this re-

gion is about 6000 meters above Sinus Iridum

(Ref. 21).

Very characteristic features of the lunar sur-

face are the "wailed enclosures", the larger of
which have been referred to as "walled plains"

and the smaller of which are called "craters" by

Bobrovnikoff. Wailed enclosures consist of a

plain surrounded by n_ountains which slope rela-

tively steeply inward (up toa 20 ° slope, which
locally may exceed 45 ° , as for Copernicus, Ref.

21) and somewhat more gently outward (5 ° to 10 °

overall for Copernicus, t%ef. 21). They are

named primacily after scientists and philosophers,
but smaller craters are named after a larger one

in the vicinity by suffixing a capitai Latin letter,

i.e., "MtistingA." Wailed enclosures may have
one or more central peaks, or they may be without

one. The walled plains are quite irregular in

shape--hexagonal, quadrangular, triangular, or
oval--with the maximmn linear dimension from

about 300-60 kin. Craters are much more cir-

cular in shape, and range in diameter from 60 km
down to the limit of the present optieaI resolution,

which is of the order of 1 km. The craters may

be large and submerged, as is Stadius, large and

partially filled, or small craterlets ranging in

size down to blowholes or "pits, " which are the
smallest observed craters. There are also such

features as confluent craters and crater chains.

Associated with some craters, and named after

them, are "fractures, "which range in size from

large valleys to fault lines (caused when part of
the lunar surface has subsided relative to the

surrounding), eiefts or rills, and cracks, which

consist of a large number of small craters joined

together in a chain.

At the time of full moon, "rays,,, or white

streaks which seem to originate from a crater

can be observed on the moon, their brightness

depending on the phase of the moon. The most

prominent is the system of rays associated with

the crater Tyeho. These ray systems can be clas-
sified as radial ray systems, tangential ray sys-

tems, ray systems in certain directions, or as

" bright spots."

Lunar surface features may merge ingo one

another, as in the following sequences of features
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listedby Bobrovnikoff(Ref. 19),fopexample:

Maria,walledplains,craters, craterlets,
craterchains,valleys;

Mountainranges,isolatedpeaks,mounds,
domes,pits.

Ina similar fashion,mountainrangesonthemoon
areconnectedwithmaria,whileisolatedpeaks
occurin or nearwalledplainsandcraters, as
mentionedpreviously.

Duringthehistoryofobservingthemoon(since
Galileo's time), no clear-cut changes of the lunar

surface have been observed. Changes in small
lunar surface features (those severalkm in extension)

depend on such conditions of visibility as the phase
of the moon, the libration, the resolving power of

the telescope, atmospheric refraction, cloud cover,

and the subjective interpretation of the observer.

These changes are mostly observed as variations

in the brightness and color of small craters, the

observation of something looking like a mist, and

the appearance of flashes, i.e., any apparent

changes in physical relief. Real changes of physi-
cal relief must occur due to the impact of meteo-

rites, but no such observation can be safely at-
tributed to that cause (Ref. 19, p 62). The lunar

surface must also change due to the pressure of

tidal motions inside the moon (Ref. 20, p 127).

Much more material on lunar topography and
the nature of the lunar surface can be found in

Bobrowlikoff (Ref. 19), Fielder (Ref. 20), Firsoff

(Ref. 21), and the bibliography listed in each of

these references. In addition, the present theories

on the origin of the lunar features, and questions

of selenology (which form the lunar counterpart

of geology on earth), such as the composition of

the interior, the type of surface, the pattern of

tectonic grids, and the divisions of selenological

time are discussed in Refs. 19 through 21. Our

knowledge of the moon' s topography and interior

will increase vastly in the near future as the

planned lunar missions of Ranger, Surveyor, and

Apollo spacecraft return scientific data to earth.

Until such time, many of the present theories

should be regarded as provisional. An illustration

of the actual photographically observed lunar

topography can be found in the Lunar Aeronautical

Chart, which has been reproduced as Fig. 2.

Other lunar maps and series of lunar maps pre-

pared in the same fashion are listed in Subsection

A-2g of Chapter III.

b. Lunar photometry

In integrated photometry, the total emission

of a celestial body is measured. The brightness
of the full moon under standard conditions is

usually given in stellar magnitudes (mag). In the
o

visual region (average wavelength 5280 A ), the
latest determination is by Nikonova (1949) who

finds -12.67 mag, and in the photographic region

(average wavelength 4250 A ) Bobrovnikoff gives

an average value of -11.55 mag, _-0.09 mag; the
color index of the moon, or the difference between

the two, is +1. 12 mag. The amount of light from
the full moon under standard conditions is 0. 342

i 0.011 lux (Bobrovnikoff, p 66). Integrated phase

curves of the moon, or the variation of the lunar

brightness with the phase, have been given by

Bobrovnikoff on p 67. The albedo, or reflecting

power of the lunar surface, can be defined in two

ways: (1) the spherical albedo of the moon or the

ratio of the light of the sun scattered in all direc-

tions by the lunar hemisphere to the total light,
is 0.073; (2) the average geometric albedo of the

moon, or ratio between the average brightness of

the disk at full moon and the brightness of a white
screen of the same size normal to the incident

solar rays, is 0. 105 (Bobrovnikoff).

In detailed photometry, the emission of light
from a small area is measured. Actually, this

is to be regarded as the average emission of light

over the various surface materials, slopes and
the microfeatures or unevenness of the surface

in that small area. The moon can be studied in

detail due to its nearness to earth, and many

photometric studies of lunar details have been
made. Of course, the brightness of the lunar

feature depends on the directions to the sun and
to the observer on earth. If one defines photo-

metric coordinates (ap, (p, ip) of a point P

whose brightness is measured by reference to the

following sketch:

P

To

Sun

To Observe_. /

On Earth

where ipiS the angle of incidence of the solar

rays, epiS the angle of reflection of these rays

to the observer on earth, and a is the phase angle
P

of the sun with respect to earth, then the brightness

of P can be expressed in the form

p*= p;',-" f " { _ )" (31)
0 (tp, p, P

In Eq (31), p* is called the ,,brightness factor,;' or

the ratio of the brightness of the diffusing surface

at point P to the brightness of a white screen of
the same size placed normally to the sun, and it

can be directly compared with the brightness of

terrestrial objects. The normalized factor f

depends on the photometric coordinates of P such

that f = 1 when ip = 0% (p = 0 ° and C_p = 0 °.

Hence P0' or the normal albedo, is the value of

p for an object near the center of the full moon.

It should be remarked that the brightness of every

detail of the moon reaches its maximum at full

moon, and at that time the brightness of structurally

similar details does not depend on the solar posi-

tion with respect to them, i.e. , f = i when i = c
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(seeBobrovnikoff,Ref. 19,p68). The following

table of normal albedos p_ Of lunar' features has

been taken from Kuiper (gel. 8, p 236) and was

obtained from a catalogue of 104 normal visual
albedos which were reduced to absolute values:

Location PCi: I

Darkest spot (inside Oceanus

Proeellarum kl_ = 60 ° , (b_ = +27 °) 0.051

Maria (seas)

Palude s (marshes)

Mountain regions

Crater bottoms

Bright rays

Brightest spot (Artstarehus)

O. 065

O. 091

O. 105

0-112 I

0. 131_

0. 176[

The ratio of brightness between the brightest

and darkest points is 3.45, which corresponds to

1.34 stellar magnitudes.

One can observe the ashen light on the moon;

this is sunlight which reaches the observer from

the dark hemisphere of the moon after having
been reflected from the earth. It is about 4000

times fainter than moonlight. Seasonal and

diurnal variation has been detected in the bright-

ness (see Fielder, Ref. 20, p 55). In addition,

there is observational evidence from spectro-

scopic data that there are luminescent substances
on the moon.

The surface of the moon seems to be quite

varied in color. These coIors range frmn the

greenish tint of the maria to yellow and orange
hues on the continents and mountains. These

shades have also been photographed and are

represented on many of the lunar maps tisted in

Subsection A-2g of Chapter III. Itowever, meas-

urements of lunar color by photography through

filters yield a surprisingly small coloration

range (see Bobrovnikoff, Ref. 19, p 71).

e. Temperature of the lunar surface

If the moon is assumed to be a black body in

thermal equilibrium, its temperature is given by
the Stefan-Boltzmann law :

WI_ = a T 4 (32)

where W_ watts/m 2 is the total amount of radi-

ated power by unit area of the lunar area whose
temperature is to be calculated, T is the absolute

temperature in °K, and _ = 5.67 x 10 -8 watts/

m2-(°K) 4 is the Stefan-Boltzmann constant. Let

r¢)_ be the distance of the moon from the sun.

The total radiated solar power crossing a sphere
2

of radius to( l is 4 _. ro( [ W(_ , and, by defini-

tion of the solar constant S, the total radiated

power crossing a sphere of radius tOO : 1 AU
--2

is 4_ r¢)O S. From conservation of energy,

- 2

w_ \ro_ / s
(33)

and the temperature of the lunar surface area
be e oi_[le s

rc) _ , (S) 1/4= (34)

For S = 1379 watts/m 2 (Allen, Ref. 22) and

r¢)¢ =-_O$ it follows that T = 394.5 ° K = 121.5 ° C.

This value should be regarded as the maximum

temperature that the lunar surface can attain,

since in practice some energy can flow to the

interior of the moon, and some energy is re-
fleeted.

The temperature of the moon is a very

difficult quantity to measure. Lunar" temperatures

have been determined by investigating the emitted
light of the moon at various wavelengths (radio-

metric measurements). Problems arise with

the resolution of the measuring instrument and the

penetration of the radiation into the lunar surface

as well. Thus one can at best obtain an average
temperature over some area at some estimated

depthbelow the lunar surface, and the tempera-

ture of certain lunar rocks, i.e., a specific local

temperature, cannot be determined.

Variations of the lunar- surface temperature
depend on the thermal inertia constant,

K = (xp c)-I"2: (35)

where X (cal/cm2-sec) is the thermal conductivity

of the surface material, 0 (grams/cm3) is its

density, and e (cal/gram) is the specific heat

per unit mass, all measured in cgs units. Optical
lunar observations indicate that K = 1000. How-

ever, Muncey (Hcf. 23) has postuiated that Xand

c vary with the absolute temperature in vacuo,
and K for 300 ° K -_ 27 ° C should be between 200
and 300.

Radiometric observations of lunar surface

temperatures indicate a maximum temperature

of about 130 ° C and a very unreliable minimum
of -153 ° C depending on the phase of the moon.

Some recent measurements by Mezger and Strassl
(Ref. 29) indicate a subsurface equilibrium tem-

perature which is independent of the phases.
Lunar surface isotherms which were obtained

by Geoffrion, et al. (gef. 25) have been given as
a function of phase in Space and Planetary En-

vironments (Ref. 26). A rough estimate of

average lunar surface temperatures as a function

of the lunar day (1 lunar day = 1 synodic month =

29 d 12 h 44 m 2.s9) h_s been given in Fig. 3. The

data in Fig. 3 is based on Pettit and Nicholson,s

data (Ref. 27) under' the assumptions that the

temperature variations in latitude and longitude
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are identical(i.e. , the surface isotherms are
circular) and that the ecliptic and lunar equalorial

planes coincide; the solar irradiation at the

subsolar point has been taken as given by the solar

constant, S = 1396.4 watts/m 2.

d. Lunar magnetic field

The instrumentation on the Soviet I,unik II

space vehicle did not detect a lunar magnetic

field. These measurements put an upper limit

on the lunar magnetic field of 3 x 10 -4 gauss,

which compares to a field strength of 0.6 gauss

in the polar region of the earth. Thus the lunar

field is very weak compared to the earth's. How-

ever, one can still assume that the magnetic field

on the lunar surface is of the order of 2.5 x 10 -5

gauss, due to the general interplanetary magnetic

field, rising to a maximum of 4 x 10 -4 gauss at

periods of high solar activity (Her. 26, p 102).

e. lmnar surface characteristics

The structure of the surface and the subsur-

face layers of the maria, continents, and moun-
tains varies according to different theories about

the origin of the major surface features. One

theory postulates the volcanic origin of these
features, while another postulates meteoritic

origin. The spectroscopic, radiometric, radar
and radio data on the moon suggest a surface

cover of dust or finely ground powder, but there

is disagreement on the thickness of the dust layer.

It is assumed to vary in thickness from a few

millimeters to several meters, although some

small areas on the moon seem to be substantially
free from dust cover (Bobrovnlkoff, Ref. 19,

p 106). Both the meteoritic and volcanic theories

predict a layer of dust.

The behavior of the dust is also open to ques-

tion. Theories range from an extremely loose

top layer held in suspension by electrostatic

forces and subject to migration (Gold, Ref. 28)

to a layer of dust grains cemented together

(Whipple, Ref. 29). The vacuum welding effect
found by Roche (ttef. 30) predicts a strong tend-

ency of particles to adhere to each other when
disturbed by seismic quakes. In Ref. 26, p 111,

it is stated that theoretical considerations suggest
"dust on the lunar surface which is cemented into

a porous, low-density matrix, weak compared to

sedimentary rocks on earth but strong compared

to earth dust and not subject to migration. "

The microfeatures (i.e., unobservably smali
features) of the lunar surface are also open to

question. Radar measurements seem to indicate

both a smooth and rough surface on the decimeter
scale (see Ref. 26, p 112), while the photometric

interpretations of Sytinskaya (Ref. 311 indicate a
mean dimension of these microfeatures of the

order of several millimeters to several centi-

meters.

f. Natural resources on the moon

A good reference on lunar natural resources
is Ref. 26,pp 114 to 121 and the listed sources.
The conclusion in that reference is that limited

amounts of useful materials may be present on

the lunar surface. One of these useful materials

could be water. Due to the low vapor pressure

of water at -150 ° C, it could remain in the solid

state at zero pressure for millions of years.
Such surface conditions exist in some lunar areas

which remain in pcrpelual shadow. There might

also be large ice deposits sealed off benealh the
lunar surface. It has been predicted that the

volatile materials associated with earlh volcanism

such as H20 , H2S, CO 2 and SO 2 have been con-

centrated near the margins of the circular maria.

g. Lunar atmosphere

The lunar atmosphere must be extremely
rarefied, as determined from such observational

evidence as sharp surface shadows, sudden star
occultation and the absence of refraction phenom-

ena during solar eclipses. Jeans (Ref. 32) was
able to show from considerations _t' kinetic theory

that, under certain assumptions, if the root-mean-

square velocity _(_) of the individual molecules

of a planet's atmosphere is 0.2 Vp, where Vp

is the parabolic or escape velocity of the planet,

then atmospheric dissipation periods of i00 million

years can be expected. The low value of V =
P

2. 375 kin/see for the moon as compared to the

earth's value of V = 11. 18g kin/see would then
P

suggest that only molecules with a high molecu-

lar weight such as SO2, C02, It2S can be re-

tained by the moon for hmg periods of time.
Some radiogenic krypton, xenon, argon, radon

and helium should be continually released from

the lunar interior, and some gases may be re-

leased during the vaporization of ice deposits.

However, the latler would escape rather rapidly

due to the low value of V . Hence, the compo-
P

sition of the lunar atmosphere is open to ques-

tion. The following table, taken essentially

from Fielder (Ref. 20 , p 115), gives maximum

densities of the lunar atmosphere as established

by various methods:

_{aximum I)ensity
<if the Lunar

Atmosphere

:Observation Method Source (atmospheres)

Absence of

twUigh,

Photography

of twilight

in green

light with a

polarirneter

Photography

of twilight

in yellow

light with
a 20-ern

coronograph

Photography

of twilight in

orange light,
with a 20-

cm corono-

graph and a

potariscope

Refraction
of radio

waves ill

the lunar

ionosphere

Refraction
of radio

waves in

the lunar

ionosphere

Russel. Dugan and
Stewart (Ref. 33i

Lipski (Her. 341

Lyot and
Dollfus (Hcf. 35)

DoUfus (Ref. 36)

Elsmore and

Whitfield

{Ref. 37)

Costain,
Elsmore and

Whitfield

(Her. 38)

< 10 -4

< 10 -4

< 10 -8

i0 -9

< l0 -12

< 10 -13
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In general,theminimumdensityonthelunar
surfaceis assumedto bethesameasthatof the
interplanetarymedium. However,iEipikand
Singer(Ref. 39)havepostulatedzeropressure
dueto therepulsionof ionizedgasmoleculesby
thepositivelychangedlunarsurface. Underthese
circumstancesa maximumlunaratmospheric

-12densityof 10 atmospherescanbeassumed
(Bobrovnikoff),comparedto 10-13atmospheres
assumedin Ref. 26.

Locallytheatmosphericdensitymayexceed
thesevaluesduetoveryrare gaseousdischarges.
Therehavebeenobservationsof hazinessnear
somefeatures,notablyof a "volcaniceruption"
in thecraterAlphonsusobservedbyKozyrev
(Ref.40). Again,fromkinetictheoryconsid-
erations,mostof thesegasesquicklyescape
fromthemoon.

Dueto theabsenceof a lunaratmosphere,the
surfaceof themoonis bombardedmuchmore
frequentlybymeteorites,mtcrometeorites,
cosmicraysandhigh-energysolarradiation(such
asX-raysandy-rays)thantheearth. Theradia-
tionandmeteoriticenvironmentnearthelunar
surfaceis probablynotmuchdifferentfromthat
incislunarspace,sincesuchanatmospherecan
providenoshielding.

h. Summary
Thelunarenvironmentaldatahasbeendis-

cussedin narrativeform for this handbookbe-
causeof its importancefor lunar flight. The
majorreferencesusedfor this discussionhave
beenRefs.8, 19,20,21and26,andthesources
indicatedin thesereferences. If it is desired
to tracethelunarenvironmentalinformationto
thesource,themajorreferenceswhichgivethe
sourceshouldbeconsulted.All numericaldata
onthelunarenvironmenthasbeeneitherref-
erencedto themajorreferenceor tothesource
itself to allowfurthercheckingofnumericaldata.

Our present ideas about surface conditions on

the moon can be summarized as follows (see

also Bobrovnikoff, Ref. 19, p 108):

(1) The lunar surface has a rough micro-

relief with many small pits, depres-
sions and elevations.

(2) The vertical relief (maerorelief) is

high, but the slopes are generally gentle.

(3) The lunar surface consists of dust

(probably radioactive) which is ce-

mented into a porous, low-density

matrix not subject to migration.

(4) There is no appreciable atmosphere,

the upper limit on atmospheric density

being 10- 12 atmospheres.

(5) Locally, gases must be escaping, and

seismic quakes must be rather com-
mon.

(6) The temperature variations are ex-

tremely great, from a maximum of

about +130 ° C near the subsolar point
to a minimum of about -150 ° C.

(7) There is no appreciable lunar mag-
netic field.

(8) There is no shielding of the lunar sur-
face from the bombardment of mete-

orites, micrometeorites, particles and
radiation which affect the structure,

texture and composition of the surface.

Some lunar environmental data, as it was ac-

quired by the space vehicles listed in Section D

of this chapter, has already been incorporated

in the present writeup. It should be mentioned

again that planned space vehicle flights into the

vicinity of the moon and exploration of the lunar

surface will yield much more data and may modi-

fy our present ideas on the near-moon environ-
ment.

C. SYSTEMS OF UNITS AND

CONVERSION TABLES

Throughout the Lunar Flight Handbook the
absolute MKS system of units, which is based

on the meter as the basic unit of length, the

kilogram as the basic unit of mass, and the sec-
ond as the basic unit of time, has been used. In

order to be able to compare the handbook data

with that presented elsewhere, the systems of
units in common use and conversion factors be-

tween the units are presented in summary form
in this section. More information on units and

conversions can be found in Judson (Ref. 41).

It is important that this or later references be

consulted, since the metric equivalents of the

U.S. foot, and U.S. pound (avoirdupois) have

recently been changed slightly by act of Congress.
Another good reference on units of measurement

is Green (Ref. 42), who aiso discusses electri-

cal systems of units. Astronomical units have

been discussed to some extent by Herrick,

Baker, and Hilton (Ref. 2) and in the standard

textbooks of astronomy.

1. Systems of Mechanical and Astronomical Units.

The unit force in an absolute system of units

gives unit acceleration to unit mass, while the

unit force in a gravitational system of units gives

the aGceleration of go to a unit mass (see Table 7).

There are two types of gravitational units; choice

of either depends on whether the unit of mass is

numerically equal to the unit mass in the absolute

system (Type 2) or differs from it by a factor go
(Type 1).
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(1)

(2)

TAt3LE 7

Systems of Mechanical Units

Pr,,p,,it}

Mass

Time

Force

Enc r_y

gram (g)

N_ -3 millibar

{mh) =

The absolute MKS system of units in

column 1, which is used by physicists,

has been employed throughout the Lunar

Flight Handbook.

Auxiliary units, related to the basic

units in the table by powers of 10, are

defined by the following standard pre-

prefixes and abbreviations

tera: 1012 T

giga: 199 G

mega: 106 M

kilo: 103 k

hecto: 102 h

deka: 10 t da

deei: 10 -1 d

eenti: 10 -2 e

milli: 10- 3 m

micro: 10 -6 _t

nano: 10 -9 n

-12
pico: 10 p

-15
femto: 10 f

atto: 10-18 a

Both basic and auxiliary units will be

used in the Itandbook, whichever are

more convenient in describing the

quantity in question.

The gravitational MKS system of units

in column 4 of the preceding table is

in general use in Europe. The word

"kilogram" is very often used as the
unit of both mass and force. Conse-

quently, the expression "kilogram"

is ambiguous, although its meaning

(3)

as a unit of mass or force is usually
clear from the context. To avoid con-

fusion, it is desirable to denote the

basic unit of mass by "kilogram" and

the basic unit of force by "kilogram
force" as has been done in the table

above. The same remark applies to

derived units such as "gram," "metric

tons " etc.

The gravitational MKS system of units

in column 3 of the preceding table is

used by European aeronautical engi-
neers.

(4)

(5)

The gravitational FPS system of units

in column 7 is in general use in the U. S.
The word "pound" is very often used

interehangeabiy as a unit of force and
mass, and consequently its meaning is

ambiguous. To avoid confusion, the

basic unit of mass has been designated

"pound" and the basic unit of force has

been designated "pound force" in the

preceding table. Again, the same re-

mark applies to derived units such as
"ounce" and "ton. "

The gravitational FPS system of units

in column 6 is used by American aer-

onautical engineers. The basic unit

of mass in this system of units is the

slug. One slug corresponds to go

pounds (mass), so that the mass M ex-

pressed in slugs is M/g0, where M is

the mass expressed in pounds (mass).

Astr(momers frequently use systems (>funits

which are adapted to calculations in dynamical
astronomy. A comparison of two common sys-
tems of astronomical units with the absolute MKS

system is given in Table 8.
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TABLE 8

Systems of Astronomical Units

Property

Lenglh

Mass

Time

Universal gravitational
constanl G or solar gravi-

tational constant K O

Force

Angular velocity

Absohle MKS

G M 1 M ,_
i ¸ =

r

Met,-r (m)

Kilogram lkg)

Second 'see)

*G = 6.67O × ll_ -I1 m3,_kg sec 2

Newton _ 1 kg i:_./s_,c 2

Radian/sec

Type i

K 2 M 2

r

Astronomic al

Astronomical unit (AU)

*1 AU = 149.53 x 109 m

Solar mass (M O )

*1 M@ _ 1.9866 x 10311 kg

Mean sotar day (MSD}
L MSD = 86.4(l(_ sec

*K O = 0.0172021l_815 (AU)3/2

M o (AU)

(MSDi 2

radian

5_rww-

]ype 2

2

b = KO M2
2

r

**M O

*10 = 5_1. 1324401_7 MSD

I,:_ = 1 (AU)3/2
tC)

** M O (AU)

2

tQ

r'adian

T

*Value adoplcd in the handbook, b'or [ur(her details see Section \.

M2 > lr_ 6

**If the mass M 2 is all appreciablu frac!i,m :_1' M O , i.e.. "_O

then quite frequently the unit of mass is ctl_se_l as M = (M O + M2) ,

and the unit of force becomes M(AU) .
t 2

0

The astronomical system of units, Type 1, has

been defined because the angular motion of the
planets and moons can be determined much more

accurately by observation than their distances.
As long as all ealcuiations are performed in

astronomical units, they are very accurate. At
the end of the calculations one can make the

transformation to the absolute MKS laboratory
units (see Subsection A-1).

The astronomical system of units, Type 2,
has been introduced in order that the mean mo-

tion (or average angular velocity) of the earth

around the sun has magnitude 1.

In both systems of astronomical units, the

dynamical system consists of a spherical earth

in an elliptical orbit around a spherical sun, so

that two-body results apply. It is also possible

to construct other sets of astronomical units by
use of other planets or comets and the sun, or

of moons around planets. The earth case is of

particular interest in lunar flight problems

when applied to the dynamical system of a spher-
ical moon in an elliptic orbit around the earth.

For the earth-moon system, the unit of length
becomes the lunar unit (*1 LU = 384,747.2 km)

and unit of mass the earth's mass (*M® =

5. 9758 x 1024kg). The unit of time in a Type 1

astronomical system is the mean solar day (MSD)

and the gravitational constant of the earth be-
corn es :

*K® - 'r |l M- M_

V

where

0. 228570389
(LU) 3/2

MSD

%¢ = 1LU

*The values adopted in the lunar handbook have
been used for the calculations.

*T = 27. 3216614 mean solar days

M® =

*M_
.... =

M$

1 earth mass

81. 357
- 0.012291505 (exact).

The unit of time in a Type 2 astronomical system

is ill ) = 4. 37501990 MSD_ therefore, the gravi-

tational constant of the earth becomes K® = 1 (LU)3/-%
2. Length, Velocitvj Acceleration and Volume/

Capacity Unit Conversions

a. Defined relations

Meter (m) = 1,650,763.73 wavelengths of the

orange-red radiation of Krypton-86: the

fundamental metric unit of length.

Foot (ft) = 0.3048 m (exact): the fundamental

U.S. unit of length.

Second (see) = 1/86400 mean solar day: the
fundamental unit of cirri time.

Velocity units: length/time.

Acceleration units: length/ (time) 2.

Volume (or capacity) units: (length) 3.

The fundamental unit of volume is one cubic

meter (m 3) or the unit of volume equal to a

cube with edges lm in length.

The fundamental metric unit of capacity is the

iiter (_), which is equal to the volume of 1 kg

of pure water at its maximum density near

4 ° C and under standard atmospheric pres-

sure of 760 mm Hg. 1 f = 1000. 028 (era3).

The gallon is a unit of liquid capacity equal to

231 cubic inches (in 3).
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b. Length conversions

Table 9 lists conversion factors for standard units of length,

TABLE 9

Len_th Conversions

International

Astronomical Units Nautical Miles Statu;e Miles Meters

I As'i, ,,, ,,, L ,_ _r:_' 1 80, 737, 9_x 106 92. 911. 52 × 106 149. 52_6 x 10 _

I _r._,,,, L , ,: "_l,i_:,_,t Mii,' = 1.238.575xl0 -B 1 1.150, 779. 447 1_2:

1 S: ,* _', ".[, h _ 1. 07G, 292x It) -8 0. 868, 978, 2'_2 1 I f,_)_. _44'

i M_'_,-r - 0._68,777.3x10 "11 0.539,956, 80:_x10 -3 0,_1,:_71, 1_}2×10 ¸_ I

1 IrL_e,r,:,'_,,n:Ll Yard = 0.811,52B,_X10 "11 0.493,736. 501x10 -3 0,568, 1_1,81a×10 _ _,_}t44 _¸

1 Interna:ional F_O_ = 0.20a, 843, 3x 10 "11 0. 164, 578, 833 x 10 -3 O, 1Bg. 39:_, g:_9× in -¸_ _. _(/4_ ¸:

1 International Inch = 0.169. 869, 4x10 -12 0.137.149,028xlD -4 0.157,82_, 282x1_ -4 tL 0254 ,_

1 micron = 10 -6 meter, 1 Angstrom unit = 10 -10 meter

c. Velocity conversions

Table 1 0 lists conversion factors for standard units of velocity.

TABLE 10

Velocity Conversions

In,, E rlat_r,nal In_e rna[Lomd In_erna!L mat

1_:_.524,3xt_) F_ _0.572_!x1() 9 _,_.{_7.4×10 l_

2025. _71, _2_ f_17_. 115, 4,_5 72, gl _. :lf_5, R2_

17_;n ¸ 52_{_ ¸ _; _ _6_ ¸¸

1.09:_, 61], 29S 3 2_0. _39, _, _% _70. 07_L 740

O.O27.777,777 0._B3,333,33:_ ]

International

Astronomical Units AstronornieM Units Nautical Miles Statute Miles Kilornelers per Meters per

per Mean Solar Day per Sidereal Day per ]tour per Ilour lIour _econd I"pet per" Second

1 A.stronomtcal Unit per

Mean Solar Day = i 1,002,737,90 3.364, OT_x 106 3,871.313 x 106 G.230,27_x 105 1.730,632 x 1[/i 5,577,928 x it3 _

I AstronornicM Unit per

Sidereal Day =
0.997.289,57 I 3.354.892 x 108 3.860,743 x 106 6.213,260x 106 1.725,907 x 106 5.682,424 x 106

l International Nauti6al

Mile per Hour = 0" 297' 258,-__ 2x 10-6 0.298,072, lxlO-6 ! [. 150,779,447 1.852. 0.514,4t4,444 1.687, 809, 856

i Statute Ml/e per flour = 0.258,310._x l0 "6 0.259,017,5x 10 -8 0.888,978.242.6 i 1.609,344. 0.447.040* 1.466.866,G66

I Kilometer per Hour = D. 160.5D8,_ x ID -6 D. 160. S46,__. x 1O -6 O. 539,956,803, ,i 0.82[,371,192 1 0.277. ?77,777 0.911. 344.415

I Meter per Second : 0. 577,823,_ x I0-_ 0. 579, 4051_,5 x I0 -_ 1.943, 844,491 2. 236,936,288 3. 600_ I 3. 280,839, 895

1 Fool per Second = 0. ]TO. 210_z__x 10-6 0.:76, S02,8 x i0 -6 0. 592,483, 80[} 0.681,818, 1St 1.097,28(I* O. 3048. I

--Underlined digits are questionable.

*Denotes exact conversion factor,

d. Acceleration conversions

Table 11 lists conversion factors foe standard units of acceleration.

TABLE 11

Acceleration Conversions

%stlonomi,'al l'ntts Asttnn_mical tlnils lilt,, ,;al[,,llaI Natti,-M 5tatut,, Mito p_,r

p,, '_1, _,, Solar Da:, '_ p,,r Sld_., ,._d D_v g Mi_,.s p,_, I{ouE ¸_ IIo_J_ Z

A.s_r onomit _1 Vrnt

per '_ohc lkc: 2 t [.O05,4B;L K: l.t01,701o * 105 t _1_.(147 * I(_ 5

p_ t Sial,: _;d DC,- t, _=,1, 54;, *,'J 1 i. :_94, [95t_ × 10 a 1. _04, 25_ * I,l:'

hit,: _,ae/,,,kal 74 ,,:_J, i1

M;I, p+, l{t,<lr- ,I 7L_,4[)14. ]l} 5 O. 717.331.Ix I0 5 i i. lSt_,77[t,.147

}tour 2 - 0._,t_L944.7 x 10 ,5 0._23.:_44,22 x l_ 5 0.8_8,97_L 242,_ 1

Kit amee,,t p,.r

tie,It 2 " [L _85,209, f, x 2_ 5 0.3_7,:_2t,_9 x 10 5 [),5"_[+,f_SG, gfl:q 4 I)._:2L, _7L, t_2

Me_'/ p_r S_,,_)rld 2 • D,(I,19,923,9_ 0.050. 197,70 0,_39[I,784,f_17,_ × 104 D. goS, 297, t161,ft × 104

Lnte* nat tonal _oot

per Second 2 = 0.015,216, S2 0.015,300, a_ 0.211,294, IRg, 6 x 104 0.245,245,245, a _ 104

_.609, ]4t [.2;I, .:,.. H :< II, 4 4 (l,4 ,if4 ,ll 4 K Ill
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e. Volumeandcapacityconversions
Table12lists conversionfactorsfor standardunitsofvolumeandcapacity.

TABLE 12

Volume and Capacity Unit Conversions

Cubic Inches Cubic Feet Cubic Meters

-4 -5
1 Cubic Inch 1* 5. 787037 x 10 1.6387064 x 10

1 Cubic Foot 1,728* 1 0. 028316846592.

1 Cubic Meter 61,023.74 ,,_ 35. 31467* 1

1 Liter 61.02545 0.03531566 1.000028 x 10

1 Gallon (U.S.) 231" 0. 1336806 3. 7854118 x 10 -3

*Denotes exact conversion factor

Liters

0.01638661

28.31605

999.972

1

3.785306

Gallons

0.004329004

7.480519

264.172

0.2641794

1

3, Angular conversions

Table 13 lists conversion factors for standard units of angular measurement.

TABLE 13

Angular Unit Conversions

Minutes Seconds

Revolutions Radtans _ of Arc of Arc

1 Revolution • 1 6.283,185,307 360.0* 21,600.0* 1,296,000.0*

1 Radian = 0.159,154,943 I 57,295,779,511 3,437.746,771 206,264.806,236

1 Degree = 2.777,777,777 x 10 -3 1.745,329,252 x 10 -2 1 60.0* 3,600.0*

1 Minute of Arc = 4.629,629,629 x 10 -5 2.908,882,096 x 10 -4 1.666,666,666 x 10 -2 1 60.0*

1 Second of Arc • 7.716,049,382 x 10 -7 4.848,136,812 x 10 -6 2.777,777,777 x 10 -4 0.016,666,666 l

**1 Angular Mil = 1.5625 x 10 -4* 9.817,477,040 x 10 -4 5.6250 x 10 -2* 3.375* 202.5*

Angular Mils

6400*

1018.591636

17.777,777,77

0.296,296,296

4.938,271,605 x 10 -3

1

*Denotes exact conversion factor.

**The "angular rail" should be differentiated from the milltradtan,

which is often designated "mU" in targeting, and the "mi]" which

is a unit of length corresponding to 0. 001 inch. From the table,

1 angular rail = 0. 981,747,704 miUiradian

4. Mass and Force Unit Conversions

a. Defined relations

Kilogram (kg) the mass of the international proto-

type kilogram: the fundamental metric unit

of mass in the absolute MKS system of units

Pound avoirdupois (ib) = 0.45359237 kg (exact):
the fundamental U.S. unit of mass in the

absolute FPS system of units,

Unit force in an absolute system of units is a unit

which gives unit acceleration to unit mass:

1 newton (nt) = I kg-m/see 2

I poundal (pdl) = 1 Ib-ft/sec 2

Unit force in a gravitational system of units is a

mass unit multiplied by go' where go =

9. 80665 m/sec 2 (exact) is the standard ac-

celeration due to gravity, the adopted sea
level value for 45 ° latitude. In U.S. units

= 32. 17404855 + ft/sec2- (derived value).
go

1 kilogram force (kgf) = 9. 80665 kg-m/sec 2

= 9. 80665 nt

1 pound force (lbf) = 32. 17404855 + lb-ft/sec 2

= 32. 17404855 + pdl

b. Derived mass unit conversions

Table 14 lists conversion factors for mass

units.

c. Derived force and mass unit conversions

I kgf = 2. 204622621 +lbf

I Ibf = 0.45359237 kgf = 4. 448176256 +
newtons

1 newton = 105 g-em/sec 2 = 105 dynes

1 newton = 0.101972661 +kgf

1 newton = 0.224811235 + lbf
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1newton= 7.23301387+pdl

1pdl = O.1382549543+newtons

1pdl = 0.31080950+ ibf

1 kg = 0. 101972661 + kgf sec2/m

1 lb = 0.0310809501 + lbf see2/ft =

0.0310809501 slugs.

_Lac Mass Na:th M_

i fiola_ Ma_s " 1 332,440

1 I:artt_ Ma_ = 3.0BS,06_x l0 6 1

i Moon Mass = 3.697,320 x 10 .8 1.229,14 x 10 2

1 Sl'Jg " 7.346, l_x 10 29 0.244,25 x 10 -23

1 Kilogram = 5. 043, 7_ x 1() -:_I 0. 167, 36 x 10 .24

l Poured (avdp) = 2.28:_,2_x 10 -31 0.759,15x 10 25

1 Ounc_ (avdp} = 1.427, i)4 x 10 :t2 _.474,47 x 10 26

--Und+._linvd digits am_ qm.stionahh..

:, D{.r_ote_ exac_ cow¢or._ion factm'.

5,

TABLE 14

Derived Mass Conversions

Moon Mass ?ugs

27.54_;, {_)c} 1. :_1, 25 x 1029

81. 358 4. L_t_4, 2 x I_12J
__ m

I 5,_32,3 x l021

0.198,72 x 1(_ 21

0.136,15 x 10 22 [_.852, 17f_,_2 x OI -2

0._;17,_ x 10 -23 3. 1_8, 095, 016 x l0 2

_. _1;, _)1 x i(_ 24 I. 942, 55_, :;_5 x 1,_ 3
v

mete: s
g0 z N8(}fi65: _ = 32. 174,()48,555 rtl._ 2

Energy Unit Conversions

a. Derived conversion factors between me-

chanical units of energy

1 joule -- 1 nt-m = 1 kg-m2/see 2

1 joule = 107 erg = 107 g-cm2/sec 2

1 joule = 0.101972661 +kgf m

1 joule = 0.7375621493 + lbf ft

1 erg = 10 -7 joule = 10 -Tkg-m2/sec 2

1 pdl ft = 0.04214011007 +joule

1 pdl ft = 0.0310809501 + lbf ft

1 kgf m = 9. 80665 joules

1 lbf ft = 32. 17404855 +pdl ft

1 lbf ft = 1. 35581794 + joules

b. Defined conversion factors from thermal

to mechanical units of energy

1 kilocalorie or kilogram calorie (kg- cal) =

1 kilowatt- hours (kwhr)
860

1

1 kg-cal = 0. 45359237 Btu = 3. 98320719 +Btu

1 watt-sec = 1 joule

e. Derived conversion factors from thermal

to mechanical units of energy

1 kwhr = 3.6 x 106 joules

1 kg-eal = 1000 calories

lkg-cal = 4186.046511+joules =

4186.046511 +kgm2/sec 2

Pau:Ms oum:_

K_log2a r2_• (a vdp) (a, dl_!

5.975,0 x 1024 _3.(72. fix i[* 2"t 2!(I.7_; × 1(' 24

7.344,_1 × 1022 16. ]i)(,(_ x [(I 22 '2q ¢_; x 11_ 22

14. :%iKI, ft02, 1_76 2_2, 174, (]4_{, 55(; 514, 7B4, 777, (1

1 2.2(4 622 62] _;5.27L_1,I)4

O. 45:_, 5F+2.37 1 l(i. (} :

0.283,495,231 x lO 2 0.0_42,5: i

1 metric ton = 1000" kilogram

1 ton = 2000':: pound (avdp) = 907. 18474* kilograms

lkg-cal = 426.8579495 +m-kgf

1 kg-cal = 3087. 469937 + ft-lbf

1 Btu = 0.2519957611 +kg-cal

1 Btu

1 Btu

= 778.0292165 +ft-lbf

= 25032. 34980 ÷ lb- ft2/sec 2

1 Btu

1 joule

1 joule

= 1054. 866068 + joules

= 2. 388888888 +x 10 -4 kg-eal

-4
= 9. 479876444 +x 10 Btu

d. Atomic energy units

The "electron volt" is defined as the amount

of work done on one electron by a potential dif-

ference of 1 volt; the charge on the electron is
-10

taken as 4. 80286 x 10 electrostatic units of

charge.

-12
1 electron volt (EV) = 1.60206 x 10 erg

1 kilo-electron volt (kEV) = 103 EV

1 mega-electron volt (MEV) = 106 EV

1 billion electron volt (BEV) = 109 EV

11
1 erg = 6. 24196 x 10 EV

18
1 lbf-ft = 8. 46297 x 10 EV

10221 kg-cal = 2.6116 x EV

6. Pressure Unit Conversions

a. Defined units

One atmosphere is defined as the standard

pressure (of the earth _ s atmosphere) at sea level

and under go = 9. 80665 m/see 2. It corresponds
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to the sea level pressure of the 1959 ARDC and the

1961 U.S. Standard Model Atmospheres.

One millimeter of mercury (mm Hg) is the

pressure that a column of mercury I millimeter

(10-3m) in height exerts at 0 ° C and under g0 =

9.80665 m/see 2.

One inch of mercury (in. Hg) is the pressure

that a column of mercury 1 inch in height exerts

at 32 ° F and under go = 32. 17404855 + ft/sec 2.

One bar is a unit of pressure corresponding

to a.force of l06 dynes per square centimeter

(or 105 nt/m2). Usually, pressure is given in
-3

terms of millibars (rob), where 1 mb = 10 bar.

b. Conversion factors between pressure units

1 nt/m 2 = 10 -4 nt/cm 2

i nt/rn 2 = 10 -2 millibar (rob)

1 nt/m 2 = 0. I01972661 + kgf/m 2

1 nt/m 2 = 0.67196908 - pdl/ft 2

1 nt/m 2 = 0. 020885437 + ibf/ft 2

I nt/m 2 = 1.4503776- x 10 -4 Ibf/in. 2

1 kgf/m 2 = 9. 80665 (exact) nt/m 2

I pdl/ft 2 = 1.48816371 + nt/m 2

I ibf/ft 2 = 47. 8802515 - nt/m 2

1 Ibf/in.2 = 6894. 756 + nt/m 2

1 atmosphere = 101,325. 00 nt/m 2

1 atmosphere = 10,332.275 kgf/m 2

I atmosphere = 68,087. 267 pdl/ft 2

1 atmosphere = 2116.2170 lbf/fi 2

2
1 atmosphere = 14.695951 + ibf/in.

i atmosphere = 760 mmHg

1 atmosphere = 29. 921260 in. fig

1 atmosphere = 1013. 2500 mb

7. Temperature Unit Conversions

a. Defined relations

t(oc) = T(°K) - Ti(OK )

T(OR) = 1.8T(°K)

t(OF) - ti(°F ) = T(OR) - Ti(°R )

where

T. (°K) = 273.16 ° K

t.(°F) = 32 ° F
1

b. Derived relations

t. (°C) = 0 o C
1

T i (°R) = 491. 688 ° R

T(oR) - T i (°R) t(°F) - t i (°F)

t(°C) - 1.8 - 1.8

T(°R) = 1.8 t(°C) + 273.16(°C)

= t(°F) - ti(*F) + 491. 688 ° R

t(°F) - 32 ° F = 1.8t(°C) = 1.8 T(°K)

- 273.16(°K)

where

°C = degrees in thermodynamic centigrade

(Celsius) scale

°K = degrees in thermodynamic Kelvin scale

°R = degrees in thermodynamic Rankine
scale

the subscript "i" denotes the freezing point
of water.

D. SUMMARY OF LUNAR EXPLORATION

PROGRAMS AND RESULTS

In the United States, the National Aeronautics

and Space Administration has been established by

Congress to direct the nation's civilian space

program which up to the time of writing includes

the entire announced U. S. lunar exploration pro-

gram. Table 15 summarizes the current U, S,
lunar spacecraft programs, while Table 16 lists
all announced U. S. and Soviet space vehicle

launches with lunar mission objectives. The data

presented in the first table has been taken partially

from Ref. 43, while the data for the second table
has been obtained from Refs. 43, 44 and 45 and

many lesser sources.
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_ect

Apollo,
NASA

TABLE 15

Current U.S. Lunar Spacecraft Programs

Contractors

North American, command

and mission modules, sys-

tems integration; MIT,

guidance development; Col-

lins Radio, telecommunica-

tions; Minneapolis-Honey-

well, stabilization and con-

trol; AiReseareh, environ-

mental control; Radioplane,

parachute recovery; Lock-

heed Propulsion Company,

escape tower rocket; Mar-
quardt, reaction controls;

Grumman, lunar excursion

module (LEM); Avco, heat

shield, etc.

Description

Three-man spacecraft for

earth-orbitaL lunar-orbital

and landing missions.
Boosters: Saturn for earth

orbits, Saturn C-5 for lunar

rendezvous, NOVA for direct

flight. Spacecraft has three

modules: command module,

4.5 x 104 newtons, 3.5 m

high; service module, 20.5

x l04 newtons, 7 m high;

lunar excursion vehicle,

13 x 104 newtons, 6 m high;

total weight 38 x 104 newtons.

An idea of the magnitude of

this lunar program may be

gained in that, by the first

launch, about 20,000 com-

panies and 150,000 to 200,000

scientists and engineers will
have been involved. The

total cost is estimated at

$20 billion.

Status

Earth orbital shots sched-

uled 1964 to 1965, lunar

orbits 1966, lunar landing
1967 to 1968. Lunar orbit

rendezvous mission pro-
file has been selected.

Lunar Logistics

Vehicle (LLV),
NASA

Grumman, Northrop

Space Technology Labora-

tories submitted feasibility

studies, contract award

expected early 1963; Pratt

and Whitney, variable-

thrust RL-10 liquid hydro-

gen engine.

3300-newton spacecraft

"bus" to carry support pay-

loads to the moon, initially

boosted by Saturn C-IB;

later 9 x 104-newton "bus"

boosted by Saturn C-5.

Seven specific payloads will
be studied.

Development expected to

begin in 1963 after con-

gressional approval of

fiscal year 1964 budget.

Cost is expected to run
to $500 million.

Ranger, NASA JPL, prime contractor;

Aeronutronic, capsule;

Hercules, retrorocket.

1300-newton instrument cap-
sule with seismometer will

be hard-ianded on the moon.

Before impact, a TV camera

tapes pictures of the lunar
surface. The booster is an

Atlas-Agena B combination.

Research and develop-

ment stage. First two

Rangers failed to launch
from earth orbit; Ranger

III launched January 26,

1962, but failed to impact
the moon and is in solar

orbit; Ranger IV impacted

on the moon April 26,

1962; Ranger V, launched

October 18, 1962, had a

power failure after 8
hours and 44 minutes; it

failed to impact the moon
and is in solar orbit. A

total of 9 more Rangers
are planned for 1962 to

1963, and there may be as

many as 15 additional

Ranger shots. At the

time of writing, the pro-

gram has been temporarily
halted for an extensive

review of the many failures.

Surveyor,
NASA

Hughes, prime contractor;

Martin, SNAP II nuclear

power generator.

3300-newton spacecraft lands

400 to 1300 newton instru-

ments on the moon. Booster:

Atlas-Centaur lunar orbiting

vehicle is planned.

II-27

First lunar flights planned
for 1964--seven soft land-

ing vehicles and five iunar

orbiting vehicles for trans-

mitting pictures of' the lunar
surface.



'FABLE 16

Data on U.S. and Soviet Space Vehicle Launches with Lunar Mission Objectives

(Chronological listing)

Definitions of success, partial success, failure are given below:

Success: major mission objective was achieved.

Partial success: yielded scientific information

Failure: yielded no scientific information on major mission objective. No mission will be stated for failures.

I. Pioneer O (U.S._ 17 August 1958, failure. Propulsion failure of the first stage.

2. Pioneer I (U.S._ 11 October 1958, partial success.

Pioneer I, a lunar probe, reached a distance of 113,000 km from earth. It carried an ionization
chamber to measure cosmic radiation, and the returned data gave a qualitative peak of radiation in

space.

3. Pioneer II (U.S.),8 November 1958, failure.

4. Pioneer III (U.S.),6 December 1958, partial success.

The mission objective was to place a scientific payload on an earth escape trajectory into the vicinity

of the moon. The space vehicle failed to achieve earth escape velocity; it achieved a maximum dis-

tance of about 100,000 km from earth.

On-board instruments included two Geiger-Mueller counters. Cosmic ray data from Pioneer III re-
vealed the existence of a second Van Alien radiation belt at a higher altitude than that discovered by

the Explorer I earth satellite. The region of high-intensity radiation _as found to consist of two

concentric belts around the earth.

5. Lunik I (U.S.S.R._ 2 January 1959, success.

This lunar probe was probably an attempt to impact. Pericynthion distance (closes approach to the
moon) of 7500 km was achieved about 36 hr after launch. After lunar passage, the space vehicle

went into a solar orbit between earth and Mars with the following characteristics:

Period = 450 d

Eccentricity = 0.148
Inclination = 15. 18°

Perihelion = 146.4 x 106 km= 0.9791AU

Aphelion = 197.2x 106km = 1.319AU

On-board instruments included:

Magnetometer

Twin Geiger-MuelIer counters

Nitrium spectral analyzer
Skin and chamber temperature thermocouples

Mtcrometeorite erosion gauge

Sodium vapor discharge device (which released, for tracking purposes, a sodium cloud

100 km in diameter at a distance of 115,000 km from earth)

The total vehicle weight was 14,435 newtons.

The purpose of the vehicle was to measure intensities of radiation and cosmic rays. Actual measure-
ments of the moon included magnetic field strength, gravitational forces, cosmic ray intensity, sedi-

ment evaluation of the lunar craters, properties of the moon's inner strata and optical teletransmis-

sion of the moon's surface.

6. Pioneer IV (U.S.),3 March 1959, success.

This lunar probe passed the moon at a distance of approximately 60,000 km because the injection

velocity was 84 m/sec below the planned velocityof 11,166 m/see. "['he vehicle continued on to a solar
orbit between earth and Mars with the following characteristics:

Period = 397d75

Eccentricity = 0.067
Inclination to

the earth' s

equator = 29.9 °
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7.

Perihelion =

Aphelion =
Inclination to

ecliptic =

147.6 x 106 km = 0.9871 AU

106173.7 x km = 1. 162 AU

1. 5 °

On-board instruments included:

2 Geiger-Mueller counters
A photoelectric sensor

A despin mechanism

The total space vehicle weight was 60 newtons.

Primary mission objectives were to:

Achieve an earth-moon trajectory

Determine the physical limits of the Van Allen radiation belts
Determine the extent of radiation in the vicinity of the moon

Test the operation of a photoelectric sensor

During the 8 hr of its battery life, this payload transmitted to earth new information on the extent and

nature of cosmic radiation in space, indicating variations on both the extent and intensity of the high-

altitude Van Allen radiation belt.

The first Van Allen radiation belt was found to consist of high energy protons and low energy electrons,

while the second belt consists primarily of low energy protons after shielding.

Data was received to a range of 650,000 km.

Lunik II (U.S.S.R.), 12 September 1959, success.

Lunik II imImcted on the moon in a triangular area bounded by the Mare Tranquillitatis, Mare

Serenitatis, and Mare Vaporum after covering the earth-moon distance of r_¢ = 381,100 km in

35h2m24 s from launch to impact. The seienoeentric velocity of the space vehicle 5 hr before impact

was 2317 m/see, and at impact it was about 3315 m/see. The last stage of the rocket also impacted

on the moon.

The guidance system of Lunik II functioned only during the initial powered phase of flight.

The mission objectives of Lunik II were to investigate:

The magnetic fields of the earth and moon
Radiation belts around the earth

Intensity and variations in cosmic radiation

Heavy nuclei in cosmic radiation
Gas components of interplanetary substance

Meteoritic particles

The results of the flight included discovery that

(1) The moon has no magnetic field or radiation belt of charged particles.

(2) The moon is enveloped by a belt of low energy ionized gases which might resemble

an ionosphere.

8. Lunik III (U.S.S.R.),4 October 1959, success.

Lunik III carried scientific equipment, including both photographic and television systems to the

vicinity of the moon. It passed close to it, so oriented as to photograph the part of the lunar surface
that [s hidden from the earth.

Photography continued for 40 minutes and images were later televised to earth. The plates and their

interpretation were subsequently published by the U.S.S.R. Academy of Sciences as an Atlas of the
Moon' s Far Side.

Lunik III passed within 7000 km of the moonfs south pole at its pericynthion on 6 October 1959.

Its initial orbital parameters were:

Nodal period = 16d2

Eccentricity = 0.8
Inclination = 76.8 °
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10.

Perigee distance = 40,671 km
Apogee distance = 469,306.4 km

9. Lunar Orbiter I (U.S) 26 November 1959, failure

11.

12.

13.

The booster for all Lunar Orbiters was an Atlas-Able combination.

Pioneer V (U.S.), 11 March 1960, success

The primary mission of Pioneer V was to record space data within approximately 80 x 106 km from

the earth. It went into a solar orbit between Earth and Venus with the Following characteristics:

Period =

Eccentricity =
Inclination to

ecliptic =

Perihelion =

Aphelion =

311d6

O. 104

3.35 °

120.5 x 106 km = 0.8059 AU

148.5 x 106 km = 0.9931 AU

On-board instruments included:

High energy radiation counter to measure high energy radiation, particularly from the sun
Ionization chamber and a Geiger-Mueller tube to measure the total radiation flux

encountered

Micrometeorite counter

Search coil magnetometer
Photoelectric cell "aspect indicator" designed to send a signal when the device directly

faced the sun

The total weight of the spacecraft was I00 newtons

Important experimental accomplishments of this cislunar and interplanetary space probe were:

(1) Discovery of large electrical current system in the outer atmosphere, namely, a

"ring" current of 5 million amperes, 40,000 km in diameter, exists 65,000 km
from earth.

(2) Discovery that the earth's magnetic field at times extends out as far as i00,000 km

and oscillates with solar flare activity.

(3) Discovery of interplanetary magnetic field which fluctuates in intensity in relation

to solar flare activity.

(4) Achievement of the first radio communication over interplanetary distances.

(5)

(6)

Discovery that the planar angle of the interplanetary magnetic field forms a large

angle with the plane of the ecliptic.

Discovery that the Forbush decrease does not depend on presence of earth's mag-
netic field.

(7) Discovery of penetrating radiation beyond the Van Allen belts. The conclusion is

that radiation will be a major hazard for manned flight between earth and Venus.

Lunar Orbiter II (U.S.),25 September 1960, failure.

Lunar Orbiter III (U.S.), 15 December 1960, failure.

Ranger I (U.S.),23 August 1961, failure

The mission objective was to make highly elliptical earth orbits near minimum three-body velocity

for earth escape. Ranger I was injected into a parking orbit around earth. It was planned to inject

the space vehicle from parking orbit by a velocity impulse of about 3200 m/sec into the desired ira-

jectory. However, the actual velocity impulse was only 73 m/sec, which resulted in a low altitude
earth orbit and caused the vehicle to re-enter the atmosphere after one week. During this time, the

on-board instruments functioned flawlessly.

The planned experiments and instruments for Rangers I and II are:

Subjects of Experiment Instruments and Measurements

Fields, charged particles Electrostatic analyzer for solar plasma

and solar X-rays Semiconductor detectors and thin-walled Geiger-MuelIer

counter
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Instruments and MeasurementsSubjects of Experiment

Ionization chamber

Triple-coincidence telescopes

Rn vapor magnetometer

X-ray scintillation detectors

Hydrogen geocorona Lyman-alpha telescope

Interplanetary dust Micrometeorite composite detectors

14. Ranger II (U.S._ 18 Novernber 1961, failure.

Ranger II had the same mission objectives and on-board instruments as Ranger I. Its injection rocket

from earth parking orbit failed and it re-entered the earth's atmosphere after 9 hr.

15. Ranger III (U.S._ 26 January 1962, partial success.

The mission of Rangers IlI, IV and V was to impact the moon to land a scientific package.

Ranger Ill used an earth parking orbit. However, the injection velocity was too high. Pericynthion
was reached 51 hr after launch. The lunar distance at that time was 36,785 km and the selenocentr[c

velocity was 1872 m/see. It continued into a solar orbit with the following characteristics:

Period = 406d4

Perihelion distance = 147. 12 x 106 km = 0.9839 AU

Aphelion distance = 173.90 x 106 km = 1. 163 AU

The mission objectives and experiments planned for Rangers III, IV and V were to:

(1) Collect "t-ray data in flight and in the vicinity of the moon.

(2) Relay to earth, by a vidicon TV camera, photos of the lunar surface

(3) Place an instrumented transmitting capsule containing a seismometer on the lunar

surface to relay seismic data to earth.

(4) Determine the radar refleetivity of the moon by a radar altimeter.

(5) Develop spacecraft and space flight technology.

The weight of Rangers III, IV and V was in the vicinity of :{000 newtons.

16. Ranger IV (U. s. ), 23 April 1962, partial success.

Ranger IV was launched at 2050 UT, 23 April 1962, and impacted on the moon at 1250 UT, 26 April

1962, after a flight time of 63 hr. It failed to perform any of its planned experiments.

17. Ranger V (U.S.),18 October 1962, failure.

The space vehicle was launched at 1659 UT. Ranger Vhad a power faiiure 8h46 m after launch, and

it missed the moon by 725 km on 21 October, continuing into a solar orbit. The Ranger program was

temporarily halted for a program review in view of the fact that 5 firings were either failures or, at

best, partial successes.
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III. THE EARTH-MOON SYSTEM

This chapter is an introduction to the kine-

matics and dynamics of the earth-moon system.

This introduction is necessary before any actual

trajectory programs or trajectories can be dis-

cussed, in order to present a clear understanding

of the geometry, the various coordinate systems,

the vocabulary and previous work in celestial

mechanics peculiar to the earth-moon system.

Section A introduces coordinate systems use-
ful for various aspects of earth to moon flight

such as tracking, motion in space, guidance,
lunar reconnaissance and attitude control. Em-

phasis is placed on the selenographic or moon-
centered rotating coordinate system and trans-

formation from geocentric or earth-centered

inertial to selenographic coordinates. A list of

current lunar maps is also given. Section B in-
troduces the classical three-body and restricted

three-body problems of astronomy and their ap-

plication to the dynamical system of the earth,

moon, and space vehicle. Valuable qualitative

as well as quantitative trajectory information can
be obtained from the restricted three-body prob-

lem. However, the application of the restricted

three-body problem to the classification of lunar

missions and its adaptation for trajectory calcu-
lations will be deferred to Chapter IV. Section C

discusses the very complex motion of the moon,
some theories used to find this motion, and the

adaptation of these theories in generating lunar

ephemerides for observations and simulation of

the moon in accurate trajectory computer pro-

grams.

A. GEOMETRY AND COORDINATE

SYSTEMS

In the description of the motion of the moon

and of vehicles in the earth-moon space many

different coordinate systems have been employed

depending on the particular problem of motion to
be solved. Several coordinate systems are used

in lunar flight problems since several different

disciplines such as geography, astronomy, aero-

dynamics, kinematics, dynamics, and numerical

analysis enter into the problem with each discipline

having evolved its own techniques and sets of co-
ordinates. Some of the more commonly employed

coordinate systems are described in the following

pages according to their origin of coordinates,

the principal directions and the fundamental plane;

transformation equations between the major sys-

tems are given. The coordinate systems are fur-
ther classified into (I) earth-centered coordinates,

(2) selenographic coordinates, (3) trajectory co-
ordinates, and (4) vehicle-centered coordinates.

Before a detailed discussion of the various co-

ordinate systems is attempted, some basic defi-
nitions of the principal time systems will be given

since time usually enters the description of motion
or observation of celestrial bodies and space ve-

hicles as the independent variable. The funda-

mental time unit is the sidereal day, or the period

of revolution of the earth about its axis with re-

spect to the stars. This time system is known as
sidereal time (ST). Mean solar time (MST) or

civil time is defined with respect to the position

of a fictitious mean sun which moves uniformly

along the equator and hence is a function of the
earth's rotation and its orbital motion as well.

The difference between mean solar time and ap-

parent solar time, the latter being based on the

apparent position of the sun, never exceeds 16

minutes. Universal time (UT), sometimes re-

ferred to as Greenwich mean time, is the mean

solar time referred to the Greenwich (prime)

meridian. However, the above listed clock times

reflect the variability in the rotational rate of the

earth due to tidal friction and irregularities from
unknown sources. A uniform mathematical time

which is defined by the apparent annual motion of

the sun in true orbital longitude rather than the
rotation of the earth, is the ephemeris time (ET)

or Newtonian time. The mathematical theory

of ephemeris time has been developed, and the
values

AT = ET - UT (I)

are given in the American Ephemeris (Ref. I),

which is published annually, or in the Explanatory

Supplement (Ref. 2) up to the year of publication.
The fundamental epoch from which ephemeris

time is measured is 1900 January 0, Greenwich

mean noon in UT which is simultaneously 1900

January 0, 12 h ET in ET. At that instant AT _-- 0.

From past observations AT is approximately

+35 s in 1962 and the change in AT is generally

less than 1 s between years (Ref. 1, page vii). A

discussion of time systems is given in Ref. 3.

1. Earth-Centered Coordinates

a. Geographic system

The origin of the geographic coordinate system
is the earth's center and the fundamental plane is

the equatorial plane. Longitude A is measured
either east or west from the Greenwich (prime)

meridian and the geocentric latitude 4' is the angle

measured along a meridian from the equatorial

plane, positive if north and negative if south of

the equatorial plane. The local radius of the

earth, Re>, is the third spherical coordinate. (See

following sketch. )

The latitude used on maps is the geodetic lati-

tude _ which is defined as the angle between the

equatorial plane and a normal to the reference

ellipsoid which most nearly describes the mean
sea level surface of the earth. The greatest dif-

ference between 4' and _ is approximately 0. 19 °

at 4' = 45°. In addition, there is an astronomical

latitude ¢>* which is the angle between the local
vertical (as determined by the local gravitational

field and affected by the centrifugal force) and the

equatorial plane. The difference between _ and
_* is called "station error" and is usually negligi-

ble. The geographic coordinate system is not an
inertial one since it rotates around the earth's

axis z G at a constant angular velocity _G' A
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rectangular geographic coordinate system with

origin at the center of the earth has its xG-axis

in the direction of)t = O, _ = O, the zG-axis toward

the north pole, and the YG-axis completing the

right-handed coordinate system in the equatorial

plane.

w •
z_ Local _ _ .._

vertical _1/z_emm

Meridian _-_

YG

Equator

b. Topocentric system

Electronic and optical observations of space

vehicles will be generally made from the surface

of the earth. It is therefore advantageous to de-

fine a topocentric or local coordinate system

with origin at the observer and the plane of the

horizon as the fundamental plane. The xh-axis

of the rectangular topocentrie system is directed

to the south (unit vector _h ), the Yh-axis is di-

rected to the east (unit vector _h ), and the zh-axis

is directed to the astronomical zenith (unit vector

_h ). The astronomical zenith _h is in the direc-

tion of the local vertical and the horizon is a

plane perpendicular to z h. The azimuth, A, is

defined as the angle from north measured positive

clockwise in the horizon plane and the elevation,

c, as the angle measured from this plane toward

the zenith. The range rp, or distance from the

observer to the vei_icle, is the third spherical

coordinate (see the following sketch). The

topocentric system is not inertial since it rotates
with the earth.

e. Equatorial system

The origin is generally taken at the earth's

center and the fundamental plane is the true equa-

torial plane of the earth. The x'@-axis is directed

A I
toward the true vernal equinox (unit vector x )

A
_Zh

.. _ Zenith

//\\ i_ dN°rth

, -L .J
I// [ \. /'IVehicle

£1)-

. A..st
k\ /

South -h

the zb-axis directed toward the north celestial

pole (unit vector _'m/ and the y5 -axis directed
kL2

so as to form a right-handed coordinate system

(unit vector _h }' Since the equator and the vernal

equinox are not inertially fixed due to the preces-
sion and nutation of the earth's axis, the "equator
and " "equinox of a certain date should be specified

in precision work. The true equinox takes into

account the nutation and precession of the earth

while the mean equinox ignores the nutation. De-

fine a coordinate system x(_ YO' z_with the same

origin as the x_, Yb' z'_ system, except that

the x_-axis points toward the mean equinox and

x_y(_-plane is the mean equatorial plane of the

earth (see followin_ sketch).

Nor, t h Pole

Position of the vehicle

/ ] \ \_ projected onto celestial

Tmle vernal equinox Celestial sphere

= right ascension, measured east from the true

vernal equinox along the celestial equator. The

right ascension may be measured either in de-

grees or hours (i hr = 15°).

= declination, measured from the true celestial

equator to the radius vector of object, positive

toward the north, negative toward the south.
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In Ref. I the coordinates are usually referred

to the mean equator and equinox of the beginning

of the appropriate year. For the ease of the sun,

the celestial longitude referred to the true equator

and equinox of a certain date is not given but is

obtained by applying a reduction factor, which is

tabulated in the Ephemeris, to the celestial longi-

tude referred to the mean equinox and equator of

the same date. This reduction is the sum of the

precession in longitude from the beginning of the

year to date, the nutation in longitude and the
correction for aberration. For a definition of

celestial longitude see the next coordinate system.

A standard reference for the mean equator and

equinox used for comparison of data from various
sources is 1950. 0.

d. Ecliptic system

The origin is generally taken as the earth's

center and the fundamental plane is the ecliptic,

or plane of the earth's orbit around the sun. The

x{ -axis is directed to the true vernal equinox

(unit vector _{), the z(-axis is directed along the

normal to the ecliptic plane (unit vector _ ),
{

and the y{-axis is directed so as to form a right-

banded coordinate system (unit vector _() (see the
following sketch).

North Pole ' -G

of ecliptic

/ _ Celest:al

/A2
J'_G

Vernal equinox

k = celestial longitude, measured positive east

e along the ecliptic from the true vernal

equinox

_ = celestial latitude, measured from the ecliptic
to the radius vector of the object

The equatorial and ecliptic coordinate systems
are defined in terms of directions from a particular

origin and not by the origin itself, which may be
taken at the earth's center, the sun's center, the

moon's center, or translated anywhere. We in-

troduce a double subscript notation to define the

coordinate system as well as the origin. If the

origin of the ecliptic and equatorial coordinate

systems is taken at the center of the earth, then
there is a single subscript "_)" or "{". However,

if the origin is taken at the center of the moon,

for instance, then we use two subscripts separated

by a comma "_, (_" or "{ , (_" respectively. A

double subscript without the comma indicates the

position of the object denoted by the second sub-
script in the coordinate system of the first. If

the origin of the coordinate system has been trans-
lated to another place, then a third subscript will

denote the object whose position is given. Thus

rOA is the distance of the vehicle from the center

of the earth in a geocentric equatorial coordinate

system while r O,_/,, is the distance of the

vehicle from the center of the moon in a seleno-

centric equatorial system.

Transformations between the various earth-

centered coordinate systems will not be given

here since this subject is treated more properly

in Chapter XI of Ref. 3.

2. Selenographic Coordinate System

a. Definitions

The selenographic coordinate system is fixed

with respect to the moon and rotates with it. The

north pole of the moon is toward the direction of

the lunar angular velocity vector _(_, and the

lunar equatorial plane is perpendicular to _,_.

Selenographic latitude qb_ is measured from the

lunar equator, positive toward the north, i.e.,

in the hemisphere containing Mare Serenitatis,

and negative toward the south. Selenographie

longitude _(_ is measured east and west from

the lunar prime meridian I(_ = 0 which passes

through the mean center point of the moon. East,

or the positive direction for k(_, is toward the

hemisphere containing Mare Crisium. Tile mean

center of the lunar disk is the point on the lunar

surface intersected by the moon-earth line if the

moon is at the mean ascending node when the node

coincides either with the mean perigee or mean

apogee. It is located in the Sinus Medii, a speci-

fied distance from the crater MSsting A (see

Fig. i). Orientation of these cardinal directions
for astronautical calculations is in accordance

with a resolution adopted by the International

Astronomical Union general assembly, 1961.

Sometimes, notably in the American Ephemeris

(Ref. i), k(_is measured eastward from the

prime meridian through 360 ° . For the primary

purpose of astronomical observations, longitude
on the moon is sometimes measured from the

lunar prime meridian positive toward the west

through 360 ° .

The axes in the selenographic coordinate sys-

tem are designated by x S, YS' Zs with origin at

the center of the moon. The zs-axis points to

the north pole of the moon's equatorial plane.

The x S- and Ys-axes lie in the moon's equatorial

plane, the xs-axis being directed to the lunar

prime meridian and YS completing the right-handed

coordinate system. Unit vectors _S' X_S' _S are

defined in the direction of the Xs-, YS- and z S

axes.
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b. Transformation from lunar equatorial to

selenographic coordinates

In addition it is useful to define a selenocentrie

lunar equatorial coordinate system which does not

rotate with the moon. The axes in this system

are designated by xc, y_, z(_ with origin at the

center of the moon. The z_- and Zs-axes coin-

cide. The x(_-axis is in the moon's equatorial

plane directed toward an inertial reference direc-

tion which will be specified each time this coordi-

nate system is used, and the y(_-axis completes

the right-handed coordinate system. (See follow-

ing sketch. )

kz¢

Inertial

reference direction

If the angle between the x(_- and xs-axes at time

t = 0 is A S , then at any subsequent time t it will

be (A S + ¢0(_t). Hence the transformation from

elenocentric lunar equatorial to selenographic

oordinates is given by

[l"Xs "i cos (A S + ¢0C t) sin (A S ÷ _C t) 0

YS - sin (A S + _ t) cos (A S + _ t} 0

z S 0 0 1

(ii}
and the inverse transformation is:

= -T(A S+ w(_t)] -1 YS

The origin of the lunar equatorial system in the

present case was taken at the center of the moon,

but it may be translated anywhere just as in the

equatorial and ecliptic coordinate systems (sub-
section le and ld)

c. Rotation from equatorial to selenographic

coordinates

The rotation from selenocentric equatorial
' z' to seleno-

coordinates x'_,_, y(_,(_, (_,_,

graphic coordinates x S, YS' Zs consists of a

rotation about z_,(_ through the angle _', a ro-

tation about _N through the angle i_, and finally

a rotation about _S through the angle A M (see

following sketch). A further rotation to an iner-

tial coordinate system xo, (_, YO,(_' z(_, _ with

the x-axis directed to the mean equinox of date

or to the mean equinox at epoch (a specified

date) may be performed, but the difference be-

tween true equinox and mean equinox of date or

of a recent epoch is smalI and can usually be

neglected in preliminary design work.

The rotations are defined by the following
matrix ec uation:

() !]x S cos A M sin A M 0

YS = - sin A M cos A M •

z S 0 0

_COS a' sin a' 01
" /ok sin a' 0c°s f_' 01

= [T(AM)] [T(ic) ] • [T(fl')] .ly_,(_ _

and the transformation to unit vectors in the

selenographie coordinate system can be obtained

by matrix multiplication and replacing the coordi-
nates by unit vectors in the coordinate directions:

_S = x_,(_(cos A M cos fl' - sin A M sin fl' cos i(_

^' (cos sin f_' gl' i(_)
+ y_}_ ,(_ AM + sin A M cos cos

+ _._,(_(sin A M sin i¢)

(3_

I° °lcos i(_ sin i(_

- sin i(_cos i

9

[5)
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A

}S : x_,< (-sin A M cos a'

- cos A M sin _' cos i_)

^, ( _'
+ y_),< -sin A M sin (5)

+ cos A M cos f_' cos i_}

A

+ z_,(_ (cos A M sin i(_)

: A ,<(sin [2'z S sin i(_)

+ _,(_ (-cos 9' sin i{)+ _,6[ cos i([

The inverse rotation from x S, YS' Zs coordi-

nates to x_,<, y_,{, z_,(_ coordinates is given

by the inverse of the product of the transformation
matrices, which in turn is the product of the in-

verses of the individual matrices in reverse order:

z., j i

icos sin t;0sin fl' cos fl' . cos i< - sin

0 0 sin i{ cos

• sin A M cos A M YS

0 0 Zsj

The values of i{ and fl' are tabulated to the

nearest 0.001 ° inRef. I for intervals of i0 days

and referred to the true equator of the earth and

equinox of date.

In order to carry out the transformations

Eqs (4), (5) or (6), values of sin A M and cos A M

are needed in terms of tabulated quantities. It

is convenient to choose as the tabulated quantity

the displacement of the earth-moon line from the
mean center of the moon, or libration of the

moon in longitude and latitude. This is given in
Ref. I as the earth's selenographic longitude and

latitude (2, b) to the nearest 0°01, which repre-

sents 300 meters on the moon's surface. Libra-
tions will be discussed in detail in Section C-2

of the present chapter.

(6)

Moon's equatorial

plane

i

A M

N

True vernal equinox

Earth's equatorial

plane

Moon's prime meridian

right ascension of the moon's ascending
node measured from.the true equinox

of date.

= inclination of the lunar equator to the

earth's equator.

= angle in the lunar equatorial plane from

the ascending node to the lunar prime
meridian.
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LetL beaunit vectoralongtheearth-moon
line. Thecomponentsof _ in theselenocentric
equatorial coordinate system x'"®,C' Y_9,C' z@,<
are:

L x - cos 6 cos

Ly - cos 6 sin c_

h z - sin 5

(7)

where c_ is the rigilt ascenmon of the moon and b
the declination of the moon. If the librations in

longitude are f and latitude b (see following sketch),

then we obtain, by applyint{ the law of cosines to the

spherical triangle with sides b, f, d, cos d =
cos b cos f so that

A

x S • _ : cos d : cos b cos J[ (8)

9S • _ : cos b sin _ (9)

• ^If we take the expression for _S i_ and YS "

from Eqs (5) and (7), substitute it in Eqs {8) and

{9) and simplify the results, then the following

expressions for sin A M and cos A M in terms of

tabulated quantities are obtained:

cos f [csin A M : cos b os i(_ cos 5 sin (fl' - a)

1

- sin i< sin 6 I

K cos 6 cos ([I' - _) (10)

cos A sin i [M cos_ _c°s iQ_ cos 6 sin (fl' - a)

- sin i< sin 6 J

]cos b cos 6 cos (f2' - o_) (11)

The right ascension o_, declination 6 and horizon-

tal parallax, _C' of the moon are obtained from

Ref. 1 and can be used to find the rectangular

eOCentric equatorial coordinates of the moon
ee sketch on the following page).

Let the magnitude of r@(_ be r@_, then:

X_c : r®< cos 6 cos _

ygj)< : r@< cos 6 sin

z_(_ : r(_< sin 6 (12)

and r(_(_ is found from the tabulated lunar hori-
R

: e is

zonta] parallax ,_< by: r_t_ n(_ where R e

Plane parallel

to earth's

equatorial

plane

z S

True vernal equinox

Moon's equatorial plane

line

-5

/--Moon's prime meridian
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T

_ZIt )

Earth

"r

5,I oon

y'®

A

the earth's equatorial radius. By making the

necessary substitutions for sin a, cos c_, sin 6

and cos 6 Eqs (10) and (11) become:

cos £ Ecos i(_ (x_) C sin f2'
sin A M r@< cos b

]- y(_(_ cos [2') - z_6 sin i(_

+ sin£ [ _
ro< cosb- x C cos fa'

]+ )0(_ sin fl'

sin _ [
cos A M : r@(_ cos b cos i< (x_< sin fl'

y_(_ cos f_')- z_3(_ sin i< ]

(13)

cos _ [x_<eos
r@(_ cos b

+ y_)_ sin 9']
(14)

With sin AIr I and cos A M known, the rotations in-

dicated by Eqs (4), (5) and (6) can be carried out.
This transformation has also been discussed in

Koskela (Ref. 4), Baker (Her. 5) and Kalensher

(iRef. 6).

d. Vehicle position in selenographic coordi-
nates

The selenographic coordinate system has a

constant angular velocity _'(Cabout thenearly Z S

axis and its origin is translated by the vector

,_r_6 from the origin of tile geocentric equatorial

system. Before the vehicle position can be given
in the selenographic coordinate system, the fol-

lowing quantities are defined by reference to the

following sketch:

The position vector of the vehicle in the geocen-

tric equatorial system,

-- : ^ ^ ^' (15)

The position vector of the center of the moon in

the geocentric equatorial system,

^i i AI AI

The position vector of the vehicle referred to the

selenocentric equatorial coordinates, i.e., in

equatorial coordinates translated to the center of

the moon,

AT + I _A_( _r®,6__: x_,<_z_x® Y®,6

A, (17)
+ z_, 6 _,, z@

The position vector of the vehicle in selenographic
coordinates,

m A A

rSA: XsAX S + YsAY S+ zsAZ S (18)

Note from the sketch below that

%,< r% ".6 (19)

and

- : (2o)
rsA rO ,6 _i

The position of the vehicle in selenographic

coordinates, (XsA, YSA' Zs&)' in terms of seleno-

centric equatorial coordinates, (x_3,6 _A' Y_,<-+A'

Z_,(_+A ), can be found by the rotation given in

Eq (4)

Zs _

A -= rSA

True vernal equinox
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z ,'J U.,c--,,J
(21)

and in terms of geocentric equatorial coordinates

by use of Eqs (15) through (18):

l

1

z, 9
(22)

The matrix multiplication indicated by Eq (22)

can be performed to yield the position of the vehi-

cle in selenographic coordinates when the position

of the vehicle and of the moon in geocentric equa-

torial coordinates as well as the pararneters i(_,

M r, A M (a, 6, _(_, f, b) of the moon are known:

XSA = (X_t_A - X_)(COS A M cos a'

- sin A M sin _' cos i(_) + (Y_A

- y_)(cos AIr I sin f_' + sin A M cos f_' cos i C)

+ (Z_A- z_(_)(sin A M sin i(_) (23)

YSA = (X_A- x_(_)(-sin A M cos a'

- cos A M sin f2' cos i{) + (y@&

- y_(_)(-sin A M sin _'

+ cos A M COS f2' COS i(_) + (Z_A

- z_C)(Cos A M sin if) (24)

zSA = (X_A- x_(_)(sin tl' sin i_)

+ (Y_A- y_)(-cos f_' sin i(_)

+ (Z n® a Z_<) COS i< (25)

The selenographic longitude and latitude of a
vehicle and the altitude of the vehicie above the

moon's surface are illustrated in the following

sketch and can be calculated from Eqs (21) and

(22) as follows:

Selenographic latitude:

= sin -1 _ZsA_ -90° < ,_< + 90 ° (26)

\rSA ] ' _ (%--

z¢ /-Lunar prime

/meridian
_/ Vehicle

Lunar _ / I \"NI_ df'l

equat°rial/N / I /l
plane / _ I HAA_ !

Selenographic longitude:

k(_ = sin-lQ YSA )[X2A+ .y2A ] 1 ]2 :

cos -- - 180 ° < X < 180 °

]' , _,_
xSA+ YSA (27)

Altitude of the vehicle above surface of moon:

h C : rSA- R C (28)

where R(_ is the mean radius of the moon and

rsA is the magnitude of the vector rZA.

e. Vehicle velocity in selenographic coordi-
nates

Before we give an expression for the ve-

hicle velocity, we have to introduce some no-
tation and make some definitions.

Let a dot over a symbol denote differentiation

with respect to time, i. e.,

• dx "" d2x
X - X -

dt ' dt=2-"

In addition, define the following velocities:

The vehicle velocity vector in the geocentric

equatorial coordinate system,

f-_ . A . /_ . At

r(_A x_x O+ , , +: ' ' Y®AY® _A_ (29)

The velocity vector of the moon in the geocentric

equatorial system,

• A • /k •

The velocity vector of the vehicle in the seleno-

centric equatorial system,

_. . A I • A I

r® ,_ _, : x_,_ _A_ + y_,¢ --AY_
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The velocity vector of the vehicle in the seleno-

graphic system is

"_ • ^ +- A +. ,, (32)
rSA= XsAX S YsAYs ZsAZs

Differentiation of Eq (19) yields

r@A = r(_(_ + r(_,(_---h (33)

However,

,¢_A = rSA + _x rSA (34)

due to the rotation of the selenographic system

with respect to the geocentric inertial coordinate

system. Hence, the velocity in selenographic
coordinates can be written,

rsA: rOC- r(_ A- _'(_ x rsA (35)

where

_{ x rsA =

I

00
cos =

xSA YSA Zs

-_(I YSA Xs

+ _¢ xSA_S

(36)

The velocity components of the vehicle in
• . •

selenographic coordinates (Xs/x, YSA' Zs2 in

terms of geocentric equatorial velocity compo-

nents of the moon and vehicle as well as seleno-

graphic vehicle position are:

YSA 1 :

Zs/xj

° C YSA_

\pxd
which can be multiplied to yield:

kSA = (>:'@&- k'Oc)(cos A M cos _'

_x'e/x-%<1

(37)

- sin AIr I sin f_' cos i(_)

+ (Y''OA- y'_<) (cos A M sin f_' (38)

+ sin A M cos f_' cos i(_)

+ (Z'(_A- z'(_([) (sin A M sin i(_) + w< YSA

• ° °

YSA : (x'o/X- X'_S) (-sin A M cos f_ '

- cos A M sin fl' cos i<)

+ (}'@&- }OC) (- sin A M sin a' (39)

+ cos A M cos f_' cos i(_)

+ (z'(_A- z'_)C) (COS A M sin i(_) - coS xSA

ZSA: (K'(_A- J{'0S ) (sin f_' sin i C)

+ "' - S) (-cos f_' sin (40)(Y(_A Y'O is)

+ (_'@/x- _'(9S) (cos i<)

f. Vehicle acceleration in selenographic
coordinates

The acceleration of the vehicle in selenoeentric

equatorial coordinates can be obtained by differ-

entiation of both sides of Eq (33).

°. °.

rOA= r@c+ r®,([ __/X (41)

where, by differentiation of Eq (34) with respect

to time in the geocentric equatorial coordinate

system, and if we assume that _C = 0

r(_,C -_A : rSA+ 2 _(_ x rSA+ _(_ x (co([ x rs2.

(42)

The vehicle acceleration in selenographic

coordinates can be obtained by solving for
,.

rsAfrom Eqs (41) and (42):

L2 22 ": 2,. -- --

rSA=re/x-r®¢ -25"_×rs/x-_ _ (_¢x rs2

where (43)

-- : -_(_ + _([ (44)x rs/x YSA _S XsAYs

and

% (co<x%/x):- _ y /xys•

The components of vehicle acceleration in

selenographic coordinates (kSA, "Yss "zSA ) in

terms of the moon's and vehicle's geocentric

equatorial components of acceleration as well as
selenographie vehicle position and velocity are:
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Ii' :iSA A-

g,

+ _/n2¢_(_ xSA C

Lunar maps

XS A

YSA (46)

Several lunar map series exist which repre-

sent the lunar surface to the best of our' present

knowledge:

USAF Lunar Atlas (edited by Dr. Gerard P.

Kuip_6-_'). This atlas contains 280 photographs of
life moon, sheet size 16 x 20 inches, scale 2.54 m

to the lunar diameter or about 12.7 km to the cm

and bound in a looseleaf ring binder. The photo-
graphs were from a collection of lunar plates
taken at Mr. Wilson, Lick, Yerkes and McDonald

Observatories in the United States and the Pic du

Midi Observatory in France.

9rthographic Atlas of the Moon (edited by
Dr. Gerard P. Kuiper), supplV-m_-n_ No. 1 to the
_F Lunar Atlas. This volume contains 60

plates YF-_ the U_KAF Lunar Atlas which carry
the orthographic grid established from a control

net of 5000 points. Grid spacing is approximately

1.25 em on the published copy. Meridians and
parallels are printed in color at 2 ° intervals on
each of the sheets which are bound in an 18 in. x

24 in. post-type hardback cover.

Rectified Lunar Atlas, supplernent No. 2 to
the USA F Lunar 5_tlas. This atlas consists of

p/o_-aphs of the entire visible hemisphere of

the moon, rectified by projection on a globe 91. 4

cm in diameter. Each of thirty fields on the

globe were rephotographed at tilree different

illuminations, corresponding to full moon, early
morning and late afternoon,

USAF Lunar Mosaic. The lunar mosaic is a

composite phoi_the moon made from the

best imagery selected from photographs taken at
Yerkes, McDonald and Mt. Wilson Observatories.

The photography has been fitted to an orthographic
projection which portrays the moon at mean libra-

tion as a sphere in true perspective. It is pub-
lished in two sizes, LEM 1, scale 1:5,000,000

(lunar diameter 69 cm) and LEM 1A, scale

l:10, 000, 000 (lunar diameter 34 cm).

Lunar Aeronautical Charts (LAC Series).
Thd-I_unar Aeronautical Charts consist of a

coordinated series requiring a total of 144 charts

to cover the entire moon. Approximately 80
charts can be produced of the visible surface

(59% of the total). Surface features are shown

by a combination of shaded relief, contours and

tones representing surface color variations. A
spherical figure of the moon is assumed with a

radius of R(_ = 1738 km. Elevations are shown

by 300-m approximate contours and referenced

to the datum which was taken at 1735.4 kin. The

scale is 1:1,000,000 (10 km to the cm). and the
sheet size is 22 in. x 29 in.

Atlas of the Moon's Far Side. This atlas,

issffe-_l,__, R Academy of Sciences and

published in the Ignited States by Interscienee
Publishers, giw_s the results of the Lunik III r'e-

connaissance of the lunar far side. The volume

gives a description of the interpretative technique
used and 30 integrated photographs of the moon's

far side obtained by the space vehicle camera.

The results include a catalog of 498 formations

classified according to the reliability of the ob-

servation and 4 maps drawn to scale l:10, 000, 000.

Topographic I,unar- Maps. This series of

maps, prepared ]3-y__y Map Service, is on
a scale of 1:2, 500,000. It shows surface features

by a combination of shaded relief, contours and

tones representing surface color variations. The

moon is assumed to be a sphere with R(_ =

1737. 988 km and the vertical datum of the 500-m

approximate contour lines is based on an eleva-

tion of 7000 m at the center of the crater M0shing
A. A complete listing of lunar formations derived

from "Named I,unar Formations" (1935) by M.

Blagg and K. MLi_ler is included on the back of

the map. One street, Mare Neetaris--Mare Im-

brium, 113 x 134 cm has been published.

3. Trajectory Coordinates

The position of a vehicle in earth-moon space

can be given either in geocentric, geographic, or

topocentrie coordinates. Similarly, its position
and velocity may be given in the selenocentric,

selenographie or topocentric coordinate systems

when the vehicle is near the moon. For tracking,
for instance, it is convenient to use a topocentric

system centered at the station since the tracking

measurements and errors are given in that sys-
tem. In the same manner several specialized

coordinate systems have been evolved for various

trajectory digital computer programs.

a. Typical rectangular coordinate systems.

The choice of coordinate systems for trajec-

tory computations depends to a large degree on
the force model and the dynamical system as

well as on the method used for" integrating the
equations of motion. A great simplification of

motion in earth-moon space is achieved when in
the dynamical system the spherical earth and

moon are assumed to move in circular orbits

around the common center of mass (barycenter)

which is taken as inertially fixed. The coordinate

systems of the Martin Simpiified Lunar Trajec-
tory Digital Program, Ref. 7, which uses the

force model described above, will be given here.

A basic coordinate system in the digital pro-

gram has its origin at the barycenter and rotates

at the constant rate _@_ of the earth-moon system

(see following sketch). The xR-axis is directed

toward the moon, the zR-axis coincides with lhe

angular momentum vector of the earth-moo_ sys-

tem, a_d the Yl'-;_xis completes the right-handed
Cartesian coorc_inate svstem.

Consider another coordinate system with

oriain at the berycenter and axes x0, Y0' z0'

At time t = 0 the xl,_ -axis is rotated by an angle

from the x 0 -axis, and subsequently the angular
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_x
Earth e

Y _ XR

Barycenter Xo

displacement of the rotating xi{ -axis from the x 0

axis is (_ + _G(_ t). A third coordinate systern,

parallel to the nonrotating x 0, Y0' z0 system but

centered at the earth, will be denoted by x e, Ye' Ze"

and a fourth, moon-centered nonrotating coordinate

system has axes x m, Ym' Zm (see preceding

sketch). Transformations from the nonrotating

systems to the rotating coordinate system in-

volve the same rotation through the angle

(_ + _@_ t) about the z-axis given by the matrix

IT (_+ wff)(it) ] =

in (¢ + u@_t) cos (_ + _(]_(rt)0 0 (47)

and a translation which can be obtained by using

the definition of the barycenter (see also Chapter

IV). Position in the nonrotating systems is re-

lated to position in the rotating system by

I =

where Y
®<

centers of the earth and moon, and v=

J0

z0_ _@<

zI{ (48)

is the mean distance between the

_<

M(_ + I%.I@

is the ratio of the mass of the moon to the total

mass of the earth and moon.

It remains to relate the x e Ye Ze system to

the geographic x GyG ZG system which rotates

about the z G -axis at the constant angular

velocity _(_). The earth-moon orbital plane

(Xe Ye -plane) is inclined to the earth' s equa-

torial plane (xG YG-plane) at the constant angle

i and their line of intersection does not
em

rotate in inertial space. Since the initial value

of _ is arbitrary, we may assume that the inter-

section between the two planes is coincident

with the Ye -axis. Thus _ locates the moon in

its orbit at time t = 0. Similarly we locate the

Greenwich meridian (xG -axis) relative to this

intersection at time t = 0 by the an_le A G which

is defined as the angle from the Ye - axis to the

YG -axis in the earth' s equatorial plane (see

following sketch).

The transformation from the x e Ye Ze

coordinate systems to the x G YG ZG system con-

sists first of a rotation about the Ye -axis through

the angle (-iem) and then of a rotation about the

z G -axis through the angle (A G + %_ t).

With [T(-iem)] = IT (tern) I-l, the

coordinate transformations between the various

coordinate systems are given by,

YG =

z G

IT (AG+ coot) ] IT (iem)] -1 (Xe }

Ze.
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Earth-moon

_ZG _ orbital plane

e /Moool
/ _ Earth's

_--v<.-'_-- -I .... /- -_ / /-- equatorial

( l/ Ear th_/_2ar YC ent e 7

-'_ YG

= IT (AG+ _oGt)] ET (iem) J

{'}
z R

where

[T (AG+_t)] =

-1

iOS (A G + _Gt) sin (A G + ¢o(Dt ) i]
sin (A G + _ot) cos (A G + _t)

0 0

(49)

(50)

T (iem) ] - 1 =

[coo,emo%'em]1 , (51)

Lsiniem 0 cos iem J

and

T [_+ _G(t)]isgivenby Eq (47).

The angles iem , _ and A G are determined for

any specific launch time t = 0 from the ephemerides
of the earth and moon.

b. VOICE coordinate system

The coordinate system and force model used

in the VOICE lunar trajectory program will be

discussed in detail under that heading (Section IV

C). Like the previous system, it is essentially

based on the moon' s orbital plane (MOP) as a

fundamental plane and the lines of intersection of

the trajectory planes with the MOP as reference

directions. The earth-moon line as well as the

earth and moon equatorial planes are defined with

respect to this basic system.

c. Orbit plane system

Consider the dynamical system of a vehicle

with negligible mass and one central spherical
attracting body. It can be shown that in this

case the vehicle moves in a fixed plane through

the center of the attracting body which is known
as the orbit plane.

The Cartesian coordinate systems given in

Subsection 3a are essentially orbit plane systems
with axes in and perpendicular to the orbit plane.

Let us define an additional coordinate system

with origin at the center of the attracting body

and the Zp -axis normal to the orbit plane. The

Xp -axis may be directed to perifocus, the

closest approach to the central body, and denoted

byx , or to the ascending node and denoted by

x_. The yp -axis is in the orbit plane, directed

so as to complete the right-handed system. The

unit vectors }p, 9p and _p are in the Xp, yp,

Zp directions, respectively (see following sketch).

zp, z_, z, z R

SVehicle/ _/A Direction of perifocus

I,__///_-_'_x__e ){eference plane

True vernal equinox x_ Orbit plane

III-12



The orientation of the orbit plane may be

given in terms of the orientation angles i, 0 <

i < 180 °, inclination between the orbit planeand

th_ reference plane measured from due east on

the reference plane, _', longitude of the ascend-

ing node measured from the true vernal equinox,

and _, the argument of perifoeus as measured

from the ascending node. The angles lem,• _G'

and _ given in Section 3a can similarly be re-

garded as orientation angles.

Since there are three second-order equations

of motion for the vehicle, there are six constants

of integration which enter into the solution of the

equations of motion. These constants may be

given in terms of initial position Xp, yp, Zp and

initial velocity Xp, j_p, _p at time tO or in terms

of six orbital elements, which do not involve the

coordinates, velocity components, or time. In

case of elliptic orbits customary sets of elements

at epoch, tO , are:

I

[2 longitude of the ascending node

i inclination

0_ argument of perifocus

a semi-major axis

e eccentricity

T time of perifocal passage
CO

The time of perifocal passage, T may be re-

placed as an element by t 0, the mean anomaly at

an arbitrarily chosen epoch t O , which is given by

t 0 =n(t O - Tw), where nis the mean motion of

the vehicle in its orbit plane. Another set of

elements is:

a' longitude of the ascending node

i inclination

%

co = _ + co, longitude of perifoeus

n mean motion

e eccentricity

e 0 = co + i O, mean longitude at epoch

Typical elements of a parabolic or hyperbolic

orbit at epoch, t o are:

_ longitude ofthe ascending node

i inclination

co argument of perifoeus

q perlfocus distance

e eccentricity

T time of perifocal passage
CO

while for a circular orbit only four elements are

required at epoch t O ,

t2' longitude of the ascending node

i inclination

r orbital radius

T_ time of ascending nodal crossing

since the eccentricity vanishes and the argument

of perigee is undefined.

These elements remain constant for the

dynamical system described at the beginning of
the present section. In astronomy the concept of
orbital eIements is used even if other forces act

on the vehicle, provided that they are small com-

pared to the central force directed toward the

attracting body. In this case the elements change

slowly with time, and osculating elements at time

t O are defined as the orbital elements of the ve-

hicle if all forces except the central force due to

the spherical attracting body were removed at

t o •

It has been found through experience that the

orbital elements of a space vehicle are useful

for descriptive purposes and to caIeulate ap-

proximate energy requirements only, but not

suited to the analytical development of orbit de-
termination and to precision work. In the iatter

case rectangular coordinates are more useful.

4. Vehicle--Centered Coordinates

In problems involving aerodynamic forces,

stability, control and guidance of a space vehicle,
it is sometimes convenient to introduce a body-

axis system fixed in the vehicle with origin at

its instantaneous center of gravity, the xb-axis

along the longitudinal axis of the vehicle in the

forward direction, the Yb-axis directed laterally

to the right and the zb-axis completes the right-

handed Cartesian system by being directed down-

ward (see following sketch).

x b

Additional specialized sets of axes which are

required for particular equipment in the vehicie
such as aeeelerometers, telescopes, rocket

engines, etc. as well as transformations between
the body axes and other coordinate systems wiil

be discussed when they are used in the manual.
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B. MOTIONIN EARTH-MOONSPACE
Thediscussionin thissectionis basedes-

sentiallyonresultsof classicalastronomywith
Moulton_sCelestial Mechanics (Ref. 8) used as

the primary reference. Derivations that are im-

portant in the discussion of various force models

used in the lunar trajectory digital programs, as

well as special solutions of the equations of mo-

tion useful for space vehicle missions in earth-

moon space are given. The material here is also

introductory to a more complicated description
of the motion of celestial bodies and vehicles in

space which may be necessary for precision tra-

jectories.

Assume a dynamical system of n bodies, which

are homogeneous in spherical layers and move

under the influence of their mutual gravitational
attraction. The determination of the motion of

these bodies reduces to finding 6n integrals of the
an second-order simultaneous differential equa-

tions, and is known as the n-body problem. The

gravitational attraction between celestial bodies
is the most important force affecting their motion
due to their enormous size and mass. The as-

sumption of spherical celestial bodies is actually

quite a good one. The equatorial semiaxes of the

ellipsoidal earth model differ by only 21.4 km

from the polar semiaxes with the radius of the

equivalent sphere being 6371.02 km. The three

dynamically determined semiaxes of the moon dif-

fer by at most 0. 7 km from their arithmetic mean

of 1738.5 kin. The effect of aspherieity of the
earth on the motion of the moon at a mean distance

of 384,402 km from the earth is thus very minor,

even for comparatively long periods of time.

The effect of the asphericity of the earth and

moon on the space vehicle will be important only

when the space vehicle moves in the vicinity of

these celestial bodies as will be shown later. Any

irregularities in the shape of the sun and planets

are completely negligible in earth-moon space

over time periods of a week since these bodies are

millions of kilometers away. Consider the two-

body problern, n=2. Six integrals of the differential

equations of motion can be found by considering the
motion of the center of mass, and the other six

constants of integration introduced by integrating

the equations of motion of one body relative to the
other.

The three initial coordinates and the initial

velocity of one body with respect to the other, or

6 orbital elements, determine the motion of the

two bodies completely. The motion of the smaller

body takes place in a fixed plane through the cen-

ter of the massive body which is known as the or-

bit plane.

For n> 2, however, only ten of the 6n integrals

which are required in order to solve the problem

completely have been found. If the dynamical sys-

tem of n bodies which are homogeneous in spher-

ical layers is subject to no forces except their
mutual attractions, six of these integrals show

that the center of mass {barycenter) exhibits rec-

tilinear motion at constant speed, three more state

that the angular momentum of the system is con-

stant, and tile tenth is simply an expression of the
conservation of kinetic and potential energy. These

I0 integrals are the only ones known since Bruns

has proved that, when rectangular Cartesian

coordinates are chosen as the dependent varia-

bles, there are no new algebraic integrals of
existing functions. Also, Poincare _ has demon-
strated that use of orbital elements as the de-

pendent variables yields no new uniform trans-

cendental integrals even when the masses of all

bodies except one are very small. However,

the general system can be reduced still further
by the mathematical trick of eliminating nodal

position and time which reduces the requirement

to e further integrals in the ease n=3.

1. Three-body Problem

For lunar flight trajectories the problem of

three bodies, n=3, which is concerned with the
motion of a vehicle in the environment of the

earth-moon system, is of primary interest. Al-

though a general solution to the problem (which
requires 18 arbitrary constants or integrals) has

not as yet been found, there are a numoer of
important results which have been established if

the initial positions and velocities of the bodies

satisfy certain conditions. While some of these

special cases have not been found in nature,

there are nevertheless some applications, for

instance the libration point satellite buoys pro-

posed by Buehheim and discussed further in

Chapter IV. These special cases can be clas-

sified into: (i) study of the properties of motion

of an infinitesimal body (i.e., one that is attracted

by finite masses but in turn is assumed not to

attract them) when it is attracted by two finite
bodies which revolve in circles around their

common center of mass; (2) construction of

particular solutions for the motion of three finite
bodies such that the ratios of their mutual dis-

tances are constants.

The former method will be discussed in the

next section while, for the latter case, special
methods will be described and references will

be given here.

There are three special solutions for the case
of 3 finite bodies: the three bodies at the vertices

of an equilateral triangle, three bodies in a

straight line, and the trivial case of the three

bodies all at one point. The two nontrivial so-

lutions are described among other piaces, in
Moulton (Ref. 8) on pages J09-318 and in Finlay-

Freundlich (Fief. 9).

a. Conditions for circular three-body orbits

Lagrange has shown that it is possible for

three finite bodies to move in elliptical orbits

around their common center of mass. The spe-
cial case of circular orbits discussed in

Ref. 8 will be presented in the following. As-
sume that the three bodies move in a common

plane. Take the origin of coordinates at the

common center of mass (barycenter) and the

x0Y0-plane as the plane of motion. Let the masses

of the three bodies be M 1, M 2, M 3 and let G de-

note the universal gravitationai constant. Then

the differential (equations of motion are:
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x0i =

Y0i=

where

U=G -

i aU
W

1 OU

IV[Y-. _Yoi
l

, i=l, 2, 3

(56)

M 1 M 2 M 2 M 3 M 3 M 1
+G-- +G--

rl, 2 r2, 3 r3, 1

(57)

is the gravitational potential, work function, or

negative gravitational potential energy, of the
• denotes the distance

dynamical system, and ri, J

between the centers of M i and Mj.

The motion of the system can be referred to

axes x_ YR with origin at the baryeenter and ro-

tating with the uniform angular veIocity co R with

respect to the x 0 Y0 axes by the transformation

Yoi l= [sin c°s0co Rt
(58)

Substitution of Eq (58) into Eq (56) yields,

after simplification:

xRi -2c°R xRi -c°K_ xRi - _i aXRi

• . • 2 1 0U

YRi +2c°t{ Yai -coRYRi - _
(59)

If the bodies are moving in circles around the

origin with the angular velocity caR , their coordi-

nates with respect to the rotating axes are con-

stant and their time derivatives vanish. Equa-
tions (59) become, if we take the derivatives of

the potential with respect to the coordinates as

indicated and drop the time derivatives of XRi

and YRi'

2 (XR1 - xR2)

- coRXR1 + GM2 3 /
rl, 2

(XR1 - xR3) - 0
+ GM3 3

rl, 3

2 (xR2 - xR1)

- c0_%XR2 + GM 1 3

rl, 2

(Xl{ 2 - XR3)

+ GM3 3 - 0

r2, 3

(60)

2 (xR3 - XR1)

- _R XR3 + GM1 3

rl, 3

(xR3 - XR2)

+ GM2 3 = 0

r2, 3

and three similar equations with x R replaced by

YR"

The converse is also true, i.e., if the six

equations (Eqs (60)) are satisfied, then the
bodies move in circles around the origin with

the uniform angular velocity c0R. The system

equations (Eqs (60)) can be reduced further by
use of the condition that the origin is at the

center of mass

M 1 Xli 1 + M 2 xR2 + M 3 XR3 = 0; (61)

JM1 YR1 + M2 YR2 + M3 YR3 = 0

to yield after simplification:

(XR1 - XR2)

2 + GM 2-_g 3

rl, 2

(xi{ 1 - XR3)

+ GM3 3

rl, 3

-0

2 (x[<2 - xR1)

-c°R xR2 + GM1 3

rl, 3

(XR2 - XR3)

+ GM3 3

r2, 3

=0

2 (YR1 - YR2 )

-co bl YR1 + GM2 3
r

1, 2

(YR1 - YR3 )

+ GM2 3

rl, 3

-0

(62)

2 (Ya2 - YR1 )

-co R YR2 + GM1 3
r

1, 2

(YR2 - YR3 )

+ GM3 r3, 3 = 0

Equations (61) and (62) are the necessary
and sufficient conditions for the existence of

solutions in which the orbits of the three bodies

are circles.

b. Equilateral triangle solutions

It remains to find solutions to the system of

algebraic equations (Eqs (61)and Eqs (62)). It

can be shown that the system is satisfied if the

three bodies lie at the vertices of an equilateral

triangle.

III-15



In thatcaser = rl, 2 = r2, 3 = rl, 3' and the
system becomes:

M 1 xR1 + M 2 xR2 + M 3 XR3 = 0

(r _ M3 _--) M2+_ - xR1 - _xa2

M 3

- -_ XR3 = 0
r

(r _ M3 _) M1+ r'_ - xa2 - r--'3- xR1

M 3

- --3- XR3 = 0
r

M1 YR1 + M2 YR2 + M3 YR3 = 0

+r-Y- Yal - r--'J- Ya2

M 3
- -3- YR3 = 0

r

M/7 M3 _) M1+ --T - YR2 - W YR1
r r

M 3

- ---3-YR3 = 0
r

(63)

The system of equations (Eqs (63)) is linear and

homogeneous in XR1, XR2 ..... YR3 and for a

nontrivial solution to exist, the determinant of

the coefficients must vanish. By defining

M = M 1 + M 2 + M 3 this condition turns out to be

w r3 4

M23 R = 0 from whichG

2 MG
R = -_ (64)

r

Then two of the XRi and two of the YRi are arbitrary,

and the equations have a solution compatible with

r. = r. Therefore, the equilateral triangular
1, j

configuration with proper initial components of

velocity is a particular solution of the three-body

problem.

c. Straight line solutions

We can find a special solution to the system

equations (Eqs (61) and (62)) by assuming YR1 =

YR2 = YR3 -- 0, i.e., all bodies are on the x R-

axis. Let them Iie in the order M 1, M 2, M 3

from the negative end of the axis toward the posi-

tive. Then XR3 XR2 >x R1 and rl, 2 = XR2 -

Xgl = r, and the

system of equations (Eqs (61) and (62) become:

M 1 XR1 + M 2 (xig 1 + r) + M 3 xR3 = 0

2
M 2 M 3 c° R

+ 2 +-_-XR1 = 0

7
2

M1 M3 _R

-7 + 9
2 yields

Elimination of xR3 and co R

M 2 + (M 1 + M 2) XR1 +

(MXR1 +M2r) 2

(65)

M_ xR1 = 0 (66)

MXRI + M2r + M3r)2

=0

a quintic equation for XR1 whose coefficients

are all positive. Therefore, there is no real

positive root but there is at least one reaI nega-

tive root, and consequently at least one solution

of the problem.

Instead of adopting XRl as the unknown,

A -- XR3 - xR2 may be used. The distance XRl

must be expressed in terms of this new variable.

The relations among XRl, XR2, xR3 and A are

M 1 XR1 + M 2 x R2 + M3 XR3 = 0

XR2 - xR1 = r

xR3 - xR2 = A

from which

[r +,%)+ 3"1
XRl - M

Substitution of Eq (67) into Eq (66) letting

r = 1, and subsequent simplification yields:

(M1 + M2)A 5 + _ M1 +2 M2)A 4

(68)

+
which is Lagrange' s quintic equation in A. Equation

(68) has only one real positive root since the
coefficients change sign only once. The only A

valid in the problem for the chosen order of the

masses is positive; hence,the soIution of Eq (68)

is unique and gives the location of the three bodies
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in the straight line solution. Two more distinct

straight line solutions can be obtained by cycli-

cally permuting the order of the three bodies.

Moulton (Ref. 8) also discusses special solu-
tions in which the orbits of the three bodies are

conic sections with e _ 0.

2, Restricted Three-Body Problem

If the mass of one of the three bodies is small

compared to that of the other two, in fact so small

that it does not influence the motion of the more

massive bodies, then the determination of the

motion of the small body is known as the restric-

ted three-body problem. Since the mass of any

space vehicle in earth-moon space ( MZN-- order

of 105 kg or less) is very small compared to that

of the earth (.MI_= 5. 9758 x i024 kg) or that of the

moon (Mff= 7. 3451 x i022 kg), this approximation

is permissible for the study of motion in earth-

moon space. In addition,we assume that the
earth and moon rotate in circular orbits around

their common center of mass with the angular

velocity _O(_ This is not quite true since the

eccentricity of the moon' s orbit around the earth

is about 0. 055 and,hence, the angular velocity

varies with the moon's orbital position. Non-

gravitational forces such as atmospheric drag,

electromagnetic forces, meteoritic drag, and

solar radiation pressure may become important

for unorthodox space vehicle shapes even though

they can be utterly neglected in the motion of

celestial bodies. Thrust forces will also be

neglected in the following discussion. The equa-

tions of motion of the space vehicle and some re-

sults of the restricted three-body problem will

be presented in this section with the discussion

following that given by Moulton (Ref. 8, pages

278-307). General' characteristics of lunar flight

trajectories have been deduced from the re-

stricted three-body problem, notably by Egorov
(Ref. i0) and Buchheim (Ref. ii). We will dis-

cuss these applications to lunar flight missions

in detail in the next chapter.

a. Equations of motion

Let the origin of coordinates be at the center

of mass (barycenter) of the earth-moon system,
and let the direction of the axes be so chosen that

the x 0 y0-plane is the plane of their motion.

(See Section A-3. ) Denote the masses of the earth

and moon by MOand M(_ and the universal gravi-
tational constant by G. Let the coordinates of

M@, M(_and the vehicle be (x0(_,y00,0);

(x0( C, y0(_,0); and (x0±, Y0L" z0/')' respectively,

so that the distance of the vehicle from the earth

and moon is,respectively:

roA = [(x0A-x00)2 + (Y0A- Y00 )2

+ (z0 ) 2] 1/2

rc/, + ,0 1
2 ] i/2+ z0A

Note that the vehicle is not restricted to motion

in the x0Y0-plane. (See following sketch. )

Then the equations of motion of the vehicle are:

I MA (x0A' Y0A' z0A)

Y0 M

,_ Barycenter

/Mo (x00' YO@' O)

¢ (x0_' YO¢' 0)

x 0

x0A -GM(_ (XOA x0(_) GM(_ (x0/' x0@'3 3

_GMG(YoA - Yogi)) (Yo A - yOC) oa = 3 - GM(_ 3

r_ r(2zx

"" -GM z0A - GM_-_

Zozx = _)r-r-_A rCA
(69)

Let the motion of the bodies be referred to a

new system of axes (xR, YR" zt_) having the same

origin as the old, and rotating in the x 0 y0-plane

in the same direction as the earth-moon system

with the uniform angular velocity w(_. The

transformation from the inertial to the moving

coordinate system is given by Eq (58). After

computing the velocity and acceleration in the

rotating coordinate system and substituting into

Eqs (69), the equations of motion of the vehicle

in the rotating coordinate system became:

• " " 2

XRA 2_(_YR/x = _o(_)(_XRz x

_ G%(xR ,-x e ) oMe (xR -x<)
3 3
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GMQ(YRA- YR@ ) GML_(YRA -YR(c )

3 2

(7O)

•. GM@z RA GM( z Rr,

z R,A = - 3 3

r@± r(QA

The direction of the xi{ YR-axes can be chosen

so that tile xR-axis is in the direction of the moon

(see sketch on page 11); then YR@: 0, YI{_[ : 0,

and the equations of motion of the vehicle sim-

plify to:

• • • 2

xRA - 2cao_YRA = co@(xRA

GM@ (XRA - xR@) _ GM(_ (xl{ A - x[{,_)

3 3

%A r_A

• ° • 2

Y_A + 2_°_xRA = °a@CS]%A (71)

where

GM@ y [_A GIVI C yl%/X

3 3

•. GM@ZRA GM(_ ZRA

zRA = - 3 3

%n rC_

2 + z[2 11/2

= - YI_Ar(_± RA xR( + + zRA (73)

b'or the particular force model (circular orbits
of earth and moon about the barycenter) and the

coordinate system (rotating system with the x R-

axis along the earth-moon line) chosen x l.._and' ,e_

xRchave become constants, and the equations of

motion do not involve time explicitly,

The equations of motion (Eqs (71)) of the space
vehicle are of sixth order and require six inte-

grals for the determination of the three-dimen-
sional motion of the vehicle; if it moves in the

earth-moon plane,thenthe last equation of F;q>
(71) vanishes, and only four integrals are re-

quired for the determination of the two-dimen-
sional motion of the vehicle. In general, solu-

tions of the equations of motion (Eqs (71)) are ob-

tained by step-by-step integration with six ve-
hicle initial conditions in the three-dimensional

case as well as the initial positions of the earth

and moon given,

b. Jacobi's integral and implications

Equations (71) admit an integral first given

by Jacobi and which has been discussed by Hill

in his Lunar Theory. Let

i 2 @2 2) GM@ GM(¢
W = 17 _@(_".... I_A + YRA + r@_'_" + r_A"'"

(74)

then Eqs (71) can be written in the form

• • • _)\V

x[% A - 2_@(yRn :0_[1 A

• . • _ _w

YRA + 2c°@_x RA _YlgA

(75)
PW

"z'RA = 5z t{A

If these equations are multiplied by 2xRA,

2_RAand 2zRA ,respectively, and added, the re-

suiting equation can be integrated, since W is a

function of xlg A, ytgA, and ZRA alone, and this

gives Jacobi' s integral:

XR + YR + zR = VR/x = 2W-C

242 2A) + 2GM@van2 =_® an + ya --r®a

2GM
+ -(7

rCA

(76)

where VI_ A is the magnitude of the velocity of the

vehicle in the rotating coordinate system and C is
the Jacobian constant. We can obtain some quali-

tative and quantitative information from trajectories
in the earth-moon system from Jacobi' s integral.

When the constant of integration C has been

determined numerically from the initial conditions,

xRA' YRA' zRA' ki%A' Yt{A" Zl_/x'Eq (76)de-

termines the velocity VRA of the vehicie at all

points in the rotating coordinate system; and

conversely, for a given VRA, Eq (76) gives the

locus of points accessibie to the space vehicle. In

particular, VRA = 0 in Eq (76) defines surfaces

of zero relative velocity. On one side of these

surfaces the velocity VI_ _ will be real and on the

other side imaginary; or, in other words, the

space vehicle can move on the real side of this

surface only. Thus the surfaces of zero relative

velocity indicate the regions of space to which the

space vehicle is constrained.

The equation of the surfaces of zero relative

velocity for" an arbitrary point xRA, yR/x, zRA

denoting the space vehicle can be obtained by

letting VRA = 0 in t£q (76):
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2 +yiA ) + 2GM@+2GM([=C
® C(xaa r@--_ rC-----_- _77)

where r@Aand cCA are given by Eqs (72) and

{73). Since only the squares of YI<A and zl% A

enter into Eq (77), the surfaces defined are

symmetricaI with respect to the x R YR and x R

:R-planes. We obtain the intersection of the

surfaces (Eq (77)) witit the xR, YR-plane or the

trace in the x RyR-plane by letting zRA = 0 in

that equation:

_ _:_,C( x 2 2RA + YRA )

2GM@

+ I/2

[(xl%A - XFto) 2 +yI%A 2] (78)

2GM(_
+ =C

1/2

The curves (Eq (78)) are shown, not to scale, in

Fig. 2, and from ttmm the general characteristics
of motion in the moon' s orbitai plane can be de-

duced.

The values of C in Fig. 2 are numerically in

the order CI> C 2> C 3> .... For initial con-

ditions corresponding to C = C 1, the vehicle can

move either in a closed region about the earth or

in a dosed region about the moon; it remains a
satellite of the earth or the moon. If the initial

conditions correspond to C = C 3, the vehicle can

move within a closed contour around the earth-

moon system such that motion from earth to

moon is possible. The limiting case separating
earth or moon orbits from earth-moon or moon-

earth trajectories is represented by C C 2.

For the value C = C 5, the vehicle can escape en-

tirely from the earth-moon system since the re-

gion of possibie vehicle motion is open behind

the moon. The value C = C 4 separates the earth-

:noon or moon-earth trajectories from possible

escape trajectories from the earth-moon system.
Besides these inner bounds of vehicle motion

there are, for the same C values, ciosed outer

boundaries around the earth-moon system beyond

which motion is also possible. A vehicle coming

from very far away with C> C 4 cannot approach

the earth or moon any closer than the outer

boundary of the C = C 4 contour of Fig. 2. When

C = C 4 the inner and outer branches of the curve

of zero relative velocity coalesce. For C : C 4 a

vehicle starting near the earth or moon can es-

cape from the system and one starting from a

remote point can reach either body. As C de-

creases to C- and beyond, the opening in the
a

contour behind the moon widens. When C = C 6

the contour also begins to open behind the earth

and when C = C 7 the only portions of the plane ex-

cluded from motion of a vehicle are the interiors

of 2 kidney-shaped regions above and below the

xR-axis. As C decreases further to a value of

C8, the regions of exclusion shrink to two points,

each completing an equilateral triangle with the

earth and moon. No region of the x R yR-piane is

excluded if C < C 8"

The points at which the contours corresponding

to C = C 2, C 4 and C 6 coalesce together with the

2 points for which C = C 8 are called double points.

From the equation for the surfaces of zero rela-

tive velocity (Eq (77)) and from the traces of

these surfaces in the x R Y[{' xRzl% and YI% zl{-

planes such as Fig. 2, it can be seen that all the

double points are in the x RyR-plane. [tence it

it sufficient to consider the trace in tile x R YR-

plane, Eq (78), for the determination of the

double points. These double points are of interest

as critical points of the curves:

2 2 2
(_, Y) : _®c(xa_ + Ya_)

2GM O
+

2GM_

+ 1/2 -C = 0

[( x 2 2] (7!,)xRA - t<_) +YRA

The condition for a critical point is that the first

derivatives of Eq (78) with respect to XRA and

YRA be zero, i.e.

2 GM@(xRA - xR(_))

- x,<)

2

c°@cY RA -

3/2 = 0

GM@yRA

3/2

GM C YRA = 0

-[(xit A - xR_)2 +YRA2] 3/2

It should be noted that Eqs (80) are identical

to the equations of motion (Eqs (71)) with ZRA

and which can be written:

(80)

=0,
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XRA

• o

YRA

• 1

- 2_@(_yRA = ]_ 'OxRA '

(s

1 8F (XRA, yi

2 _@(_xRA 2- _yRA

Since at the critical points

I)

8F OF

_a_ - 0, Wa _
-0

and since we are on a surface of zero relative ve-

locity

• 2 "2 :_ 0VRA = [xRA +yRZ_] 1/2

we obtain from Eqs (81)

.. °°

XRA = 0, yRA = 0.

Hence the coordinates of the vehicle at the

critical points satisfy the differential equations and

it will remain at the critical point unless it. is

disturbed by forces from outside of the dynamical

system. We proceed to obtain the critical points.

The second equation of Eq (80) is satisfied by YRA = 0

and the double points on the x R -axis or the straight

line solutions to the problem are given by:

2 GMo(xRA - XR_)

(82)
GM_ (xR/, ' - xR(_) 0

If, as in Ref. 8, the units are normalized such

that the sum M = MG+ M(_is the unit of mass

and the distance between the earth and moon or

lunar unit (LU) is the unit of length, then the

double points can be given in a convenient form.

Let the double points on the xR-axis be denoted

by XRi, XRM and XRe which correspond to C2,

C 4 and C6, respectively• Then from Moulton

(gef. 8, pages 292-293), for M(_small compared

to M@and hence small v, the three straight line

solutions can be obtained by expressing them as

I/3
power series in v and determining the

coefficients. The result is:

i/3

1

xRi-xR =(-;) 3
1/3

1

x M- : (-;) +

xRe - XR_

2/3 "

1(-;) +..
2/3

v 1-

-- 2- .-23 (71--2 3+
124 v . , .

(83)

M_
in LU, and where v = _ = 0.01214226.

Since xR( _ = (1 - v) LU, the double points in

terms of distances along the xR-axis are:

xRi = 0. 83741 I_U

XRM = 1.15524 LU

XRe = 1.00506 LU

For this force model of the earth-moon system

(see Chapter IV, Section B), a consistent value

is 1 LU = 384, 747.2 kin. Hence, in MKS units

XRi = 322,190 km

XRM = 444,480 km

XRe = -386,690 km

Substituting these values into Eq (78) with y RA

C 2, C 4 and (I6 can be found. These values are:

km 2

C 2 = 3.34367 (_-_)

(km) 2C 4 = 3. 322621 _-_

(km) 2C 6 = 3. 15895 _s--e_

= o,

From Eq (80), the double points corresponding to

C 8 are found to be equidistant from the earth and

moon, and form an equilateral triangle with these
two and with coordinates

XRS = 187,702 km

YRS = +333,201 km

The value of C 8 from this equilateral triangle solu-

tion is:

C8 = 3.13365 (km _ 2
\sec/

These values of C2, C4, C 6 and C 8 can be made

more meaningful if the velocity of a vehicle near

the earth is calculated using these values. For
the calculations, the positions of the vehicle will
be chosen as 100 km and 1000 km from the surface

of the earth on the xR-axis both adjacent and oppo-

site to the moon. If the equatorial radius of the

earth (6,378.2 kin) is used, these coordinates

are:

xA 1 = 1, ou6.5 km Case I: 100 km above
surface of earth

adjacent to moon
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xA2 =2,706.5km CaseII: I000kmabovesurfaceof earth
adjacentto moon

x±3 =-ii, 149.9kmCaseIII: i00kmabove
surfaceof earth
oppositeto moon

xA4 -12,049.9kmCaseIV: i000klnabovesurfaceof earth
oppositeto moon

Thefollowingsketchshowsthepositionof the
fivedoublepoints.

YR

1LU-

XReq •
-1LU

-1LU-

• (xRS, YRS )

XRi= 5', • xRm x R
ILU

• (xRS, -YRS )

The velocities are then found from Jacobi' s

integral to be:

I II III IV

C 2 = 3.34367 10942.2 10233.3 10942,2 10233.2

C 4 = 3.32621 10943.4 10234.6 10943.4 10234.6

C 6 = 3.15895 10951.1 10242.8 10951.1 10242.8

C 8 = 3.13365 10952.3 10244.1 10952.3 10244.1

The magnitude of VR& is the same regardless

of direction although it is seen to vary from point

to point (Cases I to IV correspond to different

points). From Eq (76), Fig. 2 and the preceding
sketch, it follows that on a circle with small radius

about the earth, the velocity is relatively insensi-

tive to position on the circle. This is also evident

from the table by comparing Cases I and II (altitude
i00 kin, radius 6478.2 km with positions adjacent

and opposite to the moon) where the difference is

too smallto detect. According to Egorov at an

altitude of 200 km (radius 6578.2 km), the varia-

tions in VRA are of order less than 0.01 m/see

and by comparing Cases II and IV (altitude i000 km,
radius 7378.2 km with positions adjacent and oppo-

site to the moon), the variations are of order

0. I m/see. The radius of the circle around the

earth has a very pronounced effect on the required

VRA. A change in altitude from 100 to 1000 krn

lowers the values of the critical VRA ' s by 709

m/see, indicating that the minimum required in-

jection velocity for lunar trajectories is quite
sensitive to the injection altitude.

The table also reveals that the velocities cor-

responding to C 4 are lower than those correspond-

ing to C6; therefore, it is easier to escape from

the vicinity of the earth by projecting toward the

moon than it is by projecting away from the moon.

The large qualitative difference between the

C = C 2 and C = C 4, as well as the C = C 6 and

C = C 8 contours of Fig. 2, should be compared

with the small differences in projection velocities,

indicating the sensitivity of lunar trajectories to
initial velocities.

The velocities VI_ A given in table are mea-

sured in the rotating xt%YRZ R coordinate sys-

tem and are defined as

2=_: 2 2+. 2
VRA RA + YRA ZRA (84)

while velocities in lunar trajectories are usually

given in the earth-centered XeYeZe coordinate

system defined as

2 . 2+ . 2 2
Ve± = XeA YeA + ZeA (85)

The transformation between the velocity com-

ponents is

where iT (_+ =o_t)l is given by Eq (47).

Equations (84) to (86) show that V e_ depends on

VRA, the position of the vehicle, as well as the

direction of VR± . Since the magnitude of each

VRA in the previous table is independent of di-

rection to each such value of VRA, there wouId

correspond a range of values of VeA.

c. Stability of the double points

The five double points given here are special

soIutions of the equations of motion and are

analogous to the special solutfons of the three-

body problem (see Section B-I). The question

of stability of these five points is of importance;

i. e. , will the vehicle stay near the point if

given a small displacement and velocity (stable

solution) or will it rapidly depart from that point
(unstable solution)? These smalldisplacements

and velocities may be regarded as due to small

forces neglected in the present model, which
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meansthatthespacevehiclewill actuallyremain
neat'thestabledoublepointsbutdepartrapidly
fromtileunstableones. It canbeshown(Ref.8,
pp299to 305andRef. 11,pp7-25to 7-28)that
thestraight-linesolutionsareunstable,whilethe
equilateraltrianglesolutionsarestable.

Equilateraltrianglesolutionshave been ob-

served in the solar system. With the Sun and

Jupiter considered as the massive bodies, aster-

oids have been discovered at approximately the.

equilateral point and with a mean angular' velocity

equal to that of Jupiter (Ref. 12; p 243). Buchheim

(bid. 11) has proposed to establish satellites at
the equilateral triangle points of the earth-moon

system which could serve as space buoys.

It has been suggested by Moullon (l{ef. 8) that

the phenomenon of gegenschcin, a hazy patch of

light opposite to the sun, is caused by meteors t(_m-

porarily trapped in unstable periodic orbits around

the straight-line point opposite to the sun in the

sun-earth system.

C. MOTION OF TIIE MOON

The position of the moon and its orientation in

space are of paramount importance in lunar flight:

the position is important in determining the re-

quired injection conditions, as well as the exact

value of the gravitational force of the moon on the
vehicle during flight, and the position together with

the particular orientation of the moon arc important

for landings at specified lunar sites. For these
reasons, the orbit of the moon assumed in the dis-

cussion of the three-body and restricted three-

body problems is not accurate enough for preci-

sion trajectories, and a consideration of neglected
forces in that modei and a comparison with astro-

nomical observations of the moon is necessary.

It has been observed that the mean period of the

moon' s rotation about its axis is equal to its
sidereal period of revolution around the earth.

Because of this fact and since lunar vehicles origi-
nate and are observed from earth, it is advan-

tageous to define the orientation of the moon with

respect to earth. The moon rotates at a very

nearly constant rate about its axis while its orbital

angular velocity varies slightly due to the eccen-

tricity of the lunar orbit. Thus, during different

orbital positions of the moon, some areas on either

side of the moon become visible. Similarly, the

rotational axis of the moon is inclined by about

6.7 ° to the normal of the moon' s orbital plane and

areas beyond the north and south poles of ttw moon
become visible from earth at various times. These

apparent side-to-side and tilting movements of the

moon which occur periodically, are known as op-
tical librations. In addition, the gravitational at-

tractions of the sun and planets on the triaxially
ellipsoidal figure of the moon cause a slight wobble
of the rotational axis of the moon which is called

__h,ysieal libration. At any given time, lunar libra-

tions are determined by the moon's precise

orbital motion, its rotational rate, and dynamical

effects of its asymmetrical figure.

The first part of this section discusses very

briefly the methods used for computing the posi-

tion of the moon, the comparison between com-

puted and observed positions, and the tabulated

lunar ephemerides. The latter part is devoted to

a brief discussion of lunar' librations and to an

approach for determining librations in a digital

computer trajectory program which has stored

positional data of the moon in geocentric equa-
torial coordinates.

1. Lunar Theory

Lunar theory in celestial mechanics is gen-

erally understood to bc the analytical theory of
the motion of the moon. The gravitational attrac-

tion of the earth and sun, and the earth's and

lunar aspherieity, as well as gravitational at-

tractions of the planets as they affect the mo-
tion of the moon aJ'e considered. The methods

employed in various lunar theories differ, but

at present three methods, those of Delaunay,
ttansen, and ttill-Brown, are referred to most

frequently. A detailed discussion of these and
other lunar" theories can be found in Ref. 13.

The brief discussion of lunar theories given
here follows Refs. 13 and 14, as welt as Ref. 2.

The discussion is restricted to the "main problem"

of lunar theory, which is the three-body problem
of astronomy as applied to finding the motion of

the spherical moon under the gravitational at-
traction of the spherical earth and sun.

a. Delaunay's lunar theory

Choose an inertial right-handed Caztesian

coordinate system with origin at the center of

mass of the dynamical system earth, moon, sun

and axes x' 0y'0 z0 Let the mass of the earth

be M@ with position x0@ Y0_t_ z0_]_" The posi-

tion of the moon with mass M(_ in this eoordi-
t i i

nate system is giwm by x0_, Y0_' z0_ and that

of the sun with mass M@by x0@, Y0@' z0@

The equations of motion of the moon are (com-

pare with Eqs 56 and 57):

•., 1 01L 1
x°c - MC _0

•., 1 01J k

yoc MC b_oc ,--1 (87)

_, _ 1 OU .[

0 C MC 0C J
where

GM@M_ GM@M@ GM(_ M@
U - + + (88)

r0, _ r0,® C ® -_0 r°'¢ -_@

is the gravitational potential (work function)

which is the negative of the gravitational poten-

tiai energy of the dynamical system.

Since the three-body equations of motion
(Eq (87)) cannot be solved in closed form, suc-

cessive approximations must be used to obtain

solutions in analytical form.

In the earth, moon, sun configuration

r0, @ __(_ is small compared to r0,(_ _@

r0, C -_ @ while M@is large compared to

or
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Mq:_+M(_,
proximates

very well.

coordinates

and the earth-moon barycenter ap-

unperturbed motion around the sun

It is, therefore, helpful to introduce

of the moon relative to the earth,

! !

x@< = Xo< - Xo@

YOC = Y0< - Y0@

I I

z@c = z0c - z0@,

(89)

and coordinates of the sun relative to the earth-

moon barycenter,

I

, M@x0@+M C x0¢

xo _ = Xo@ M@ + M(_

I I

M@ YO_ + MC YO_[

Y0 @ = Y;@ - M@ + M(_ (90)

I

M®z_® + M< z0®I

_0 G = z00- M®+ M C

The precise orientation of the axes need not

be specified for this discussion, but, for agree-

ment with previous notation, x@_, Y@C' z@c

are equatorial coordinates of the moon referred

to the mean equator and equinox. After making

the necessary transformations, the equations of

motion (Eq (87))become

M@ + M C 3U

k@C = M@M C x_<

M@+ M C OU

Y@C M@ M< 8Y@c

M(_ + M< oU

K z@_ M@M C a @C

(91)

It remains to express U in terms of the new

r 2 2 2 2coordinates. Let
OC = x@c + Y@C + z@(_ be

the square of the distance from the earth to the
2 2 2 2

moon, r@@ = x0@ +y0@ + z0@be the square

of the distance from the earth to the sun with

components in the respective coordinate sys-

tems (the earth-moon barycenter is very close

to the earth), and S the angle at earth between

the earth-moon and earth-sun lines (see follow-

ing sketch). Then, as in Ref. 14, page 270,

-1 -1 -t

r0,@_ C, r0, @ ,@ andr0, C __@ eanbeex-

pressed in terms of r@C, r@@and Legendre

polynomials of cos S, Pn (cos S), toyield for

the gravitational potential:

M@M C (M@+M(_)M@

U=G[?-_ + re@

2

M@M C M@ r@(_ P2 (cos S)
+ M@+M C --3_r@@

3

M@M C Mo(M@-M_) r[@__C

+ M(_) 2 P3 (cos S)
(M@ + ro @ (92)

+ M@M cM@(M_)- MoM C + M_ )

(M@ + M<) 3

_<_P4 (cos S)+ • . •1r @Q

Zlt) q /0

/!
r_ O

-I- /

I/
I/

The equations of motion of the moon (Eq
(91)) can now be written in the form

•. G(M@+Mc) 3R
x_< + 3 x@< = )N

G(M @_M¢) OR

_)OC + r 3 Y@C = 8y@£
®<

., G (M_)+ M(_ ) OR

z@< + ---3 z@< : _®<
r_<

(93)

where, if we substitute the expressions for the

Legendre polynomials,

R = G M@[{r@c_ 2

(94)
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- -_- cos + . . .

4

/_ 15 2 S- T COS

(94)

G(M@+Mc)M(9

In this expression for R the term --%-_[_ r@o

has been omitted since it is independent of x 0_"

y@,_ and z O_ "

The second term on the left-hand side of the

equations of motion (Eq (93)) is due to the gravi-

tational attraction of the moon by the earth, and

R is the disturbing function which in this case is

due to the gravitational attraction of the sun by
the earth. If R z 0 the intermediate orbit, or

first approximation to the path of the moon, is an

ellipse.

The expression for R may be modified further
by using Kepler's third law for the motion of the

earth-moon barycenter,

2 3

G(M 0 + M O+ M C) = noa@, (95)

where n@ and a O are the sun's mean motion and

semimajor axis, respectively. If we ignore the

mass of the earth and moon compared to that of

the sun, and that of the moon with respect to the

earth, then we obtain after some manipulations:

2 3

R =noa_ \a(_ / (__+_i 3 cos2S)

3 4

(96)

2 4 5

+ (- - cos S
T

-8-35 cos4S) + ...... ] = R1 + R2 + R3 +

In Delaunay' s lunar theory the orbit of the

earth around the sun is a fixed ellipse in a fixed

plane. The expression (Eq (96)) for R can now
be expanded in terms of elliptic elements of the

moon's and sun's orbits. Delaunay's series for

R consists of one constant and 320 periodic terms

(Ref. 13).

The method of variation of parameters, also
known as variation of elements and variation of

arbitrary constants, is used in the solution of the

lunar equations of motion. Consider the case
R = 0. Then the instantaneous coordinates and

velocity components of the moon allow the deter-

mination of a unique set of six orbital elements

for the intermediate orbit of the moon which are

constants of the motion. In actual motion R ¢ 0

and the orbital elements vary with time for the

true orbit. The requirement of the method is

that the coordinates and velocity components ex-
pressed in terms of the elements and time have

the same form for the intermediate (R = 0) and

the true (R ¢ 0) orbit. For the actual motion,

one can obtain six first-order differential equa-

tions (called wtriation of parameter equations)

which give the time-variation of the elements and

are fully equivalent to the equations of motion
(Eq (93)). The procedure calls for integration

of the variation of parameter equations to obtain
the orbital elements as functions of time and ex-

pressed as sums of trigonometric series. Finally

the coordinates as well as velocity components

may be obtained as functions of time by a coordi-
nate transformation.

Delaunay chooses a set of elements so that

the system of differential equations takes the
canonical form:

-v
dL OF d_ OF

-ai- : ae "_- : -_E

da OF dg_ £"

dH 8F dh

_i- = Fff"_-

These canonical

are, in terms of

in section A-3.

L = (_a) 1
/2

G = (ua) 1
/2

1/2
H : (.a)

h =[2

(97)

8F

elements or Delaunay variables

and the elliptic eIements given

(1- e2) 1/2

(1- e2) 1/2 cos i

(98)

_0 : A ndt +

time

and

, the mean anomaly at any

2

2 L 2
+ R (99)

is the Hamiltonian of the system.

The variation of parameter equations (Eq (97))
cannot be solved in closed form, just as one cannot

solve in closed form the equations of motion of

the three-body problem, and some approximation
procedure has to be used. The coefficients of

the disturbing function R are expanded in power
a

1 . e@ and _(and not ex-series in e(_, sin 2 l_m'
<27

plicitly in canonical elements), while the general
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argument is a function of the angles h, g, ! re-

ferring to the moon's orbit, and the mean

anomaly of the sun IC)' During the integration,

powers of n__ appear as part of the power

nC
series.

The principle of Delaunay's method consists

of introducing a force function

2

= P + P1 +Q1 cos0, (100)

where P1 denotes the nonperiodic terms in the

expansion of R, and QI cos 0 is one single

periodic term selected from the expansion of R.

Delaunay then integrated the canonical equations

by using _ instead of F by applying a canonical
transformation to new canonical variables L',

G', H', _', g' and h' This transformation is

applied to _ and the term Ql cos @ has disap-

peared from R. Delaunay used a succession of

canonical transformations (or contact transfor-

mations) until the coefficients of the periodic

series became sufficiently small to be neglected.

By use of this method Delaunay has obtained

a literal solution to the main problem of lunar

theory which was presented in two volumes. His

results may be readily extended to include other

effects on the motion of the moon (Ref. 13).

The utilization of systems of differential

equations in canonical form has the advantage

that general rules can be established governing

transformations from one set of variables to

another, which is helpful if one considers the

large number of transformations required. One

drawback to Delaunay' s method is the slow con-

n O
vergence of the coefficients in powers of

n(_

0. 00748 in the case of the moon. Convergence in

terms of the other parameters is generally satis-

factory.

b. Ilansen's lunar theory

Hansen considers the motion of the moon in

its instantaneous orbit plane and starts with the

variation of parameters differential equations.

For the orbital elements 12, i, w, a, e and I0

these equations, which are equivalent to

Delaunay' s canonical equations (Eq (97)) (Refs.

3 and 14), become

d_/ 1

_- = 2 e2) 1/2na (1 - sin i

di cot i _R

_i- = 2 e2) 1/2na (1 -

1

2 e2) 1/2na (1 - sin i

8R h

_F-

(1oi)

8R

d_ (1 -e2) 1/2 8R cot i _R

H{-- = --F _Ye 1/2 _{-
na e na 2 (1 - e 2)

da 2 aR

_i- = h-& _F_o

1/2

de 1-e 2 aR (1 -e 2) _R

Hi- =-T 9_0 _m_ a7na e e

dl0 2 8R I - e 2 aR

_Y-= - n-_ _-£ - --2-- _- " (101)
na e

(continue d )

These equations have been derived in Chapter
IV of Ref. 3.

In Hansen's method, the plane of the sun
need not be fixed, and the fixed plane of refer-

ence may be chosen as the ecliptic of a given

date or any other plane inclined at a small an-

gle to the ecliptic. However, the motion of
the sun must be known.

Consider first the motion of the moon in its

instantaneous orbit plane. Define an intermediate

orbit in the plane of the moon's instantaneous

orbit and one focus at theorigin. Let it have

constant elements n, a, e and mean anomaly

nz where z is a variable with units of time. Let
" 2

the elements of the intermediate orbit satisfy n
_3
a = G (M(_% + IV[(( ) and let its perigee have a

forward motion _y in the plane of the orbit

where y is an unknown constant depending on
the attraction of the moon. Impose the addi-

tional condition that the _oint on the intermediate

orbit with true anomaly f and radius r lies on
the actual radius to the moon. If the true

radius to the moon is r, then put

r =r (1 + k), (102)

where k is the fraction of the lunar radius be-

tween the intermediate and lunar orbits. The

motion of the moon in the instantaneous plane

of the orbit can be given as soon as z and k are

determined in terms of time and the introduced

constants. In tb_e determination of k and z a

single function W of the variable elements is

used. Hence, in Hansen's method, the angular

perturbations in the plane of the orbit are added

to the mean anomaly of the intermediate orbit

and the radial perturbations are expressed by

the ratio of the true and intermediate radius

vectors.

Next the differential equations for the lati-

tude of the moon above the fixed reference plane

are obtained by considering the motion of the

instantaneous orbit plane.

The motion of the instantaneous orbit plane

is independent of the motion of the moon in that

plane. Finally, by a transformation of coordi-

nates it can be shown that some very small

corrections have to be added to the true orbital

longitude in the instantaneous orbit in order to
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obtainthetrue orbitallongitude(i_+ _+f) re-
ferredto a fixeddirectionina fixedreference
plane. Thedifferentialequationsaresolvedby
successiveapproximations,withtileexpansion
of'R in termsof ellipticelementsandtimebeing
nowsomewhatdifferentfromtheformusedby
Delaunay since the sun's orbit is not fixed.

The slow convergence of the coefficients in

powers of" n@_ has been overcome b v startin_

n C
with assumed numerical values of all parameters

entering into the theory as obtained from obser-
vation. If the observations improve, then small

changes in these values have to be taken into

account. Tables based on Hansen's lunar theory
were introduced into the calculation of the lunar

ephemeris in 1862 (Ref. 14).

c. ttill-Brown lunar theory

Both Delaunay' s and Hansen' s lunar" theories

consider the motion of the moon in the osculating
plane, or the plane which at each instant contains

the origin of coordinates, the radius, anti velocity
vectors of the moon. The method of variation of

parameters is then used to obtain the motion of

the moon. The Hill-Brown lunar theory, on the

other hand, uses rectangular coordinates referred

to axes moving with the constant angular velocity

of the sun's mean motion, n@. Advantages in

using rectangular coordinates are: the develop-
ment of R in terms of elliptic elements is un-

necessary, and the perturbations are obtained in

a form more immediately suitable for ephemeris
calculations (Ref. 14).

The theory begins with the expansion of those

nO
perturbations that depend on -- with the follow-

n((
ing simplifications in the original equations:

(i)

(2)

(3)

The disturbing function R is given by

R 1 only (see Eq (96)) which means that

aC
--- is neglected in the series expan-
a O
sion.

The moon is assumed to move in tile

plane of the ecliptic (icm = 0).

The sun's orbit about the earth-moon

baryeenter is circular (e@ = 0, a@, =
r@G)-

The remaining differential equations thus give all

no

terms depending on n_- and e(_ , and the terms

depending on e C may be eliminated by obtaining

a particular solution of those equations.

Choose an ecliptic coordinate system with
origin at the center of the earth as in Section

A-1 and the x (_ , Ye(_ axes in the fixed plane of

the ecliptic. By assumption (2) above zc_ :_ 0.

The results of Section C-la carry over directly
since the orientation of the axes was not speci-

fied rigorously" in this development. With the

other assumptions the equations of motion (Eq

(93)) become, by use of Eq (96) and a change in
notation,

G(M@ + M(_ ) OR 1

cC + 3 x_C =
Z' E_

G(M 0 + M(_) aR 1

5;_ C + - _.3- Y_(_ = axcc

(103)

where

R 1 = n@r@(_ -g+_ cos2S

(104)
2 2 2

r cC = x_c +YEc

Introduce a coordinate system x R YR ZR

rotating with angular velocity n@ so that the

xR-axis is ahvays in the direction of the sun.

The equations of motion of the moon become

in this coordinate system (compare with Eqs
(74) and (75)):

.. _W
XR( _ - 2 . = _-x_n ._>13}H'<

, OW J

w ith

G(M@+ M_r) I 2 2 2

W = r _ gnO(XR_+YR_)+R1

(105)

(106)

Introduction of r_/_ cos S = xt:l,(_ into the ex-

pression (Eq (104)) for R 1 permits us to write

G(M@ + M,_) 3 2 2
W = + n x (107)

r g @ R_'

and yields for the equations of motion:

.. G (M q:)+ M (_)

- 2 nO._RC + ....Xu_ xI_
r

2 2

- 3n_xR_,Q). = 0

• G (M ®+ M C)
YRC +2noxlU _ + 3 yR_ = 0

r

_C

(1o8)

To obtain a solution to Eq (108) that depends

n O
on-- only, consider the initial conditions

n C
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XRC(t=t0)=c1

YRC (t =t o) = 0 (109)

;=Rcit=t o)= 0

YRC it =t o) = c2

that is, the moon is in conjunction with the sun at

t = t0.

Poincare' has shown that the initial conditions

(Eq 1109)) yield in the rotating coordinate system

a periodic solution of the form

- (t-t O ) + A 1 cos 3x Re = A 0 cos (n_ n@)

(n(_ -n@) (t -t 0) + A 2 cos 5 (n¢ -n@)

(t - t 0) + . . .

>{110)

YR(_ = B0 sin (n(z -n O ) (t-t 0 ) + B 1 sin 3

(n(_ -n O ) (t-t O) + B 2 sin 5 (n¢ -n@)

it - t o) + . . .
J

where A. and B i, i = 0, i, 2, . . . are constants.
I

This periodic solution is taken as the intermediate
orbit in the Hill-Brown lunar theory. The inter-

mediate orbit allows one to determine the coeffi-

nO
cients with any accuracy in -- which circum-

n(_'

vents the slow convergence of the coefficients in
n

the expansion of R in powers of -@---- encountered
nc

in Delaunay' s lunar theory (Ref. 13).

The first step for solving the main problem

of lunar theory consists of determining the inter-

mediate orbit, i.e., the coefficients A i, B i in

n O
Eq ill0) in terms of the parameter m =

n(_ -n o

for which Hill adopted a numerical value of
m = 0. 080848933808312. Next the general

solution of the differential equations (Eq (108)) is

obtained, i.e., terms in R whose coefficients de-

pend on m and e_ are considered. Then the

simplification e@ = 0, a O = re@ is lifted and

terms in R whose coefficients depend on m and

e@ are considered. This procedure is continued

by considering terms in R whose coefficients de-

1 . • as well as m and
pend on m, a_; m, sing 1 m,

-1
1 . a and

combinations of co, e C, sing 1 m, O

higher powers thereof.

The tlill-Brown lunar theory consists first of

the development of a solution to the equations of

motion of the moon for the main problem of

lunar theory as outlined above and secondly of

the perturbations of this solution due to the
direct and indirect gravitational attraction of

the planets, the shape of the earth and tri-

axiality of the moon. The obtained coordinates
of the moon are expressed as explicit functions

of time. Thirdly, Brown (Ref. 15) computed

rabies deriving coefficients of all periodic terms

to an accuracy of the order' of 0". 001 in true

orbital longitude (52 + . + f), celestial latitude

q)E' and 0".0001 in sine parallax (Ref. 16) by
6

keepingterms °fthe °rder ( n@)n_- , ec'6 Co'4

g 1E m' a-_ in the disturbing function

R for the main problem in the lunar theory.

Brown' s tables have been used for the cal-

culation of lunar ephemerides from 1923 to

1959. However, in order to obtain the position

of the moon to the desirg.d precision of 0 s. 001

in right ascension and 0 . 01 in declination, the

lunar ephemeris since 1960 is based on values

of true orbital longitude, celestial latitude and

horizontal parallax calculated directly from the

trigonometric series obtained from the tlill-

Brown theory, not Brown's tables. It has been

shown in Ref. 16, pages 364 through 417, that

there exist discrepancies in the calculation of

the moon's positiorr from the theory and from
the tables which amount to an amplitude of

approximately 0". 1 in lunar true orbital longi-
tude, 0". t5 in lunar celestial latitude and 0". 01

in sine parallax.

At present the position of the moon for

ephemeris calcuIations is expressed in the
form of a trigonometric series as given in the

explanation in Brown's tables (Ref. 15). Each

argument is a linear function of time with small
secular and periodic additions due to the pla-

netary attractions. Each coefficient of the
series is a constant for the main problem of

lunar theory with small secular and periodic
additions due to the attractions of the planets.

Consider only the main problem of lunar

theory. Each argument in the series expression
is in turn a function of four fundamental argu-

ments "_',-"

J ©'
F

D

= (_ - p, mean anomaly of the

go L F, mean anomaly of the I

=C - t/, argument of lunar perigee)

plus mean anomaly of the moon /
= (2 - L, mean elongation of the !

from the sun |moon
J

(111

*The notation adopted in Her. 1 has been used

here, with the astronornical notation as well
as the one used in Bro,.vnVs tables indicated.
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< (L)

L (L')

(_)

f_

=_ +_ + _ is the mean longitude of the

moon, measured in the ecliptic from
the mean equinox of date to the mean

ascending node, then along the orbit

= _°O + _ O (g@) is the mean longitude

of the sun, measured from the mean
equinox of date

= the mean longitude of lunar perigee,

measured from the mean equinox of

date along the ecliptic to the mean

ascending node, then along the orbit

= the mean longitude of solar perigee
measured from the mean equinox of date

= the longitude of the mean ascending
node of the lunar orbit on the ecliptic

measured from the mean equinox of
date

The arguments of each periodic term of the

series can be expressed in the form

Pl _ +P2 go +p3 F +p4 D (112)

where

Pi = 0,±I, +2, +3 ....

If the attractions of the planets are taken

into account, then secular and periodic terms

are added to the solar arguments and for each
planet a new argument appears which is a linear

function of time. Effects of the shape of the

earth and moon are included in the solar argu-
ments.

The coefficients in the trigonometric series

for the position of the moon are functions of four
of the lunar and solar orbits:

e, e< = o. 054900489, constant of the eccen-
tricity of the moon' s orbit

1.
y = sin _-I m = 0.044886967, constant

of the inclination of the moon' s orbit

e' , e_ = eccentricity of the sun' s orbit
_v

= 3422". 5400, constant of sine parallax

(113_

n©
The numerical value of_, which can be

obtained very accurately by observation, is

introduced at the beginning of the theory. Each
coefficient of the periodic terms consists of a

numerical factor multiplied by the principal
characteristic, which can be expressed in the
form

ql q2 q3 q4

e< e@ y a
(114)

where qi = 0, 1, 2, 3 .... The gravitational

attraction of the planets introduces secular and
periodic terms in the parameters e y.

O'

The independent variable is time counted

from the epoch 1900, January 0.5 ET (Green-

wich mean noon) which corresponds to the

Julian Date 2415020.0. The position of the moon

is usually given in spherical coordinates , i.e.,

true orbital longitude (f2 + c_ + f), celestial

latitude dOe , and hSrizontal parallax _(_ (which

is a measure of _<). Its position in geocentric

rectangular, or any other coordinate system
can then be obtained by suitable transformations.

The trigonometric series as used for the

calculation of the lunar posittoncontains 1629

periodic terms which are tabulated in 1Ref. 16,
together with 50 additive terms to the funda-

mental arguments.

Most of these periodic terms are very small
but some of the principal ones, all due to the

disturbing effects of the sun, have sizable

coefficients. The better known terms are:

The variation is a periodic perturbation in the

moonls mean longitude< with a coefficient +39'

29". 9 and a period of one-half mean synodic

month (new moon to new moon), or approxi-

mately 14.8 days. Evection is the largest

periodic perturbation in < due to periodic

variations in the osculating eccentricity and

longitude of perigee _ of the moon's orbit. Its

coefficient is +1 ° 161 26".4 and the period

approximately 31.8 days. This term was known
to Hipparchus from observations of the moon.

The annual equation is another perturbation in
<with coefficient -11' 8". 9 and period of an

anomalistic year (the time between successive

solar perigees in the orbit of the sun as seen

from earth) of approximately 365.3 days. This

perturbation is due primarily to the eccentricity

of the earth's orbit around the sun. The paral-

lactic inequality is a secondary perturbation in

(_ (t. e., it comes from a term of 1R2) with a

coefficient -2' 4". 8 and period of mean synodic

month (approximateIy 29.5 days). The principal
perturbation in latitude has a coefficient of +10'

23". 7 and a period of approximately 32.3 days.

d. Theory and observation

From lunar theory one can obtain the true
coordinates of the moon as a function of time.

This lunar position given by theory must be

compared with observation and usually several
corrections and coordinate transformations have

to be applied before this comparison can be made

accurately.

The geometric ephemeris is a table giving

the actual or true position of the body at various

times. However, actual positions cannot be

observed directly since light emitted by the body

takes a finite time to travel from the body to the

observer (correction for light time), and during
this time the body as well as the observer have

been displaced from their original position
(stellar aberration). These two corrections are

known as planetary aberration, and if applied

to the observed or apparent position of the body,

they yield its true position. A table giving the

apparent position of the body as a function of time
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is known as an apparent ephemeris. Ephemer-

ides of the sun, the principal planets, and the

moon are usually apparent ephemerides. In the

case of the moon the entire planetary aberration

consists of the correction for light time which

amounts to approximately 0". 7 in geocentric

mean orbital longitude C with a variation of 0". 05

due to the eccentricity of the moon' s orbit (Ref. 14),

and will be neglected in this manual. For obser-

vations of the moon from the surface of the earth,

such as moonrise and moonset, three additional

corrections, the diurnal aberration due to the

earth' s rotation which is a part of the stellar

aberration, the atmospheric refraction, and a

parallax correction, must be applied to reduce
the observation to an apparent ephemeris. For-

mulas for these corrections are given in Ref. 2.

Furthermore, the fundamental reference

planes in celestial mechanics, the ecliptic and

the celestial or earth' s equatorial plane, as

well as one of their points of intersection on the

•celestial sphere, the vernal equinox, are in

constant motion. Hence, the geocentric coor-

dinates of the body vary due to this motion. The

secular terms of this motion, which are inde-

pendent of the positions of the earth and moon,

are termed precessional terms. There are also

periodic terms in this motion with arguments _ ,

_Q, F, D, f_which are termed nutationalterms.

The principal term in nutation depends on f_ and

has an amplitude of 9".210 and a period of 18.6

years,

The tabulated positions of the sun, moon, and

planets in the ephemerides are usually apparent

positions, that is, the coordinates of the--6--6-d_s
an observer at the center of the earth would see

them, and referred to a coordinate system de-

fined by the instantaneous equator, ecliptic, and

equinox. If the corrections for planetary aber-

ration are applied to apparent positions, tru__._ee

positions are obtained. If the periodic effects of

nutation are neglected, mean positions are ob-

tained, which are the coordinates of the body

referred to a coordinate system defined by the

mean equator, ecliptic and equinox of date.

Sometimes the effects of precession are removed

for some time in order to provide a fixed refer-

ence for theoretical calculations. The selected

epoch is usually chosen at the beginning of the

year 1950.0 in order that data from various
sources can most easily be combined. In l%ef.

1 some positions are referred to the mean

equator and equinox at the beginning of the

year for which the ephemerides have been

published. Transformations between the

various reference systems are given in Ref. 6.

e. Available lunar ephemerides

The principal reference for lunar ephemerides

is the American Ephemeris and Nautical Almanac

(Ref. I) which is published annually about two

years in advance. On page 51 of Ref. I the fol-

lowing items are tabulated for every tenth day:

the values of the fundamental arguments F ', _,

C, and D (see the following sketch); i_,

lhe inclination of the mean equator of the moon

to the true equator of the earth; z_ the angle

along the mean equator of the moon from its

ascending node on the true equator of the earth to

its ascending node on the ecliptic of date; f_C' the

right ascension of the ascending node of the mean

lunar equator" measured from true equinox of date.

Mean I

lunar

_ Ecliptic

i¢

/ e?Ue t°fh
True vernal

equinox

On pages 52 to 67, Ref i tabulates the following

items for every half day: the apparent true orbital

longitude referred to the mean equinox of date; the

apparent celestial latitude referred to the ecliptic

of date; the horizontal parallax, the semidiameter

and ephemeris transit (time of crossing of the

ephemerides meridian which is I. 002738 A T east

of the Greenwich meridian). In Ref. i, pages 68

to 159, the apparent right ascension, the appar-

ent declination referred to true equator and equi-

nox of date, together with differences for inter-

polation and fully corrected for" planetary aberra-

tion, are tabulated to the nearest 0 s.001 and 0".01,

respectively for each hour of ephemeris time

(pages 68 through 159). This accuracy has been

recommended for national ephemerides by a resolu-

tion of the International Astronomical Union in

1952 and has been introduced into the lunar ephem-

eris from 1960 on. The phases of the moon and

lunar perigee and apogee have also been tabulated

on page 159.

The ephemerides for physical observations of

the moon are based on the apparent coordinates

given in the fundamental ephemerides described
above and tabulated to a lesser degree of accuracy,

usually to 0.01%

The age, or number of days since the previous

new moon, and the fraction of the illuminated

disk, the earth's and sun's selenographic coor-

dinates, the physical librations, and the position

angles of the axis and bright limb, tabulated

for Oh Universal Time (UT) of each day, are

given in Ref. i, pages 310 through 317. The

earth's selenographic coordinates are the sum

of the optical and physical librations of the moon.

They are the coordinates of the point on the lunar

surface where the moon-earth line intersects

it, and are given in the customary selenogra-

phic coordinate system described in Section A 2

of _his Chapter. The sun's selenographic co-

ordinates are the coordinates of the point of
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intersectionof themoon-sunlinewiththelunar
surfaceandaregivenin termsof selenographic
latitude(seeSectionA-2)andcolongitude.The
selenographiccolongitude,).,(_, 0 o < k, C < 360 _,
can be obtained by subtracting the seqenographic
longitude, 0 ° < k < 360 ° , from 90 ° or 450 °. The

sun,s selenog_aphic colongitude determines the

illuminated regions of the lunar surface because

the sun,s selenographic latitude is small I _ CI
< 2°: at new moonX,(_: 270 °, at first quarter

).'C -z- 0 °, at full moon k,_: 90 ° , and at last

quarter k,_= 180 ° . The terminator is defined

as the ortliogonal projection of the great circle

bounding the illuminated (by the sun) hemisphere
of the moon on a plane perpendicular to the line

of sight from the center of the earth or EML.

The selenographic colongitude of the sun can thus

be regarded as the selenographic longitude of the

terminat°r" The selenographic longitude
enin_g terminator differs by 180 ° from

that of-_morning terminator. The position

angle of the axis is the angle between north on

the lunar meridian which passes through the

apparent central point of the lunar disk and the

declination circle through this central point,

measured positive eastward from the north point

of the disk. The position angle of the bright limb

is the angle between north on the same lunar

meridian and the moon-sun line. Both position

angles are analogous to the azimuth of topoc_ntric

coordinates. In addition to the selenographic

coordinates of the earth, the physical librations

in longitude, latitude, and position angle are

tabulated separately.

For lunar mission planning purposes, positions
of the moon are often needed in advance of the

published ephemerides. In principle, it is pos-

sible to determine lunar ephemerides from the

Hill-Brown Lunar Theory for all time. However,

position of the moon can be determined with

essentially ephemeris accuracy for decades and

the Nautical Almanac Office of the United States

Naval Observatory is prepared to supply

ephemerides outside of the scope of Ref. I for

special purposes. To aid the lunar mission plan-

ner, a future addendurn will give the geocentric

rectangular coordinates of the moon referred to

mean equator and equinox of date for the years

1965 through 1969 in half-day intervals. The

components of lunar position x_, y_, z_ are

given in units of earth radii.

Woolston (Ref. 17) gives additional lunar data

for the years 1961 through 1971 useful for the
mission planner: the phases of the moon are

tabulated to within approximately one minute of

time. and graphs giving the declination of the

moon with phases indicated as well as its radial

distance are presented for a rapid visualization
of trajectory and solar illumination data. From

the graphs the declination can be obtained to

@ithin approximately 0.5 ° and the radial distance

to within 600 km for any given date. Some of

these graphs are presented in Chapter XI.

2. Librations of the Moon

An important factor in planning lunar missions,

whether they be circumlunar, reconnaissance,

or landing flights, is the libration of the moon,

or its orientation with respect to earth. Libration
is defined as the 'position of the moon-earth line

with respect to the Moon,s Mean Center point."
This mean center point* is the fundamental base

for the mapping of lunar features. The following
sketch illustrates the orientation of the mean

center point (MCP) and how latitude and longitude

are measured in the selenographic coordinate

rth Pole

aequator

ime

some parameters such as orbital elements and

the masses of the planets must be supplied by

observation, and due to observational inaccuracies,
the position computed from theory by use of these

observed parameters will differ more and more
from the true position at the same time the

farther ahead one tries to predict. However, the

*Definition of MCP: The mean center point
is the point on the lunar surface where the

surface is intersected by the radius of the

moon that would be directed toward the earth,s

center, were the moon to be at the mean

ascending node when the node coincided with

either the mean perigee or mean apogee.
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system.Thelunarequatorialplaneis per-
pendicularto themoon,sspinaxisandthe
magnitudeofthemoon's angularvelocity_o(_ispracticallyconstant.

Selenographiclongitudesaremeasuredfrom
theMCP(locatedin SinusMedii-CentralBay)
positivein thedirectiontowardMareCrisium
(Seaof Crises). Selenographiclatitudesare
positivein thehemispherecontainingMare
Serentatis(Seaof Serenity).Alsoin thesketch,
thepositivelibrationsin longitude(+I)and
latitude(+b)areshownin theselenographicsys-
tem. Thesecoordinatesarethesumof boththe
opticalandphysicallibrationsin longitudeand
latitude,respectivelyThereforeastheposition
of themoon-earthline (MEL)changeswith
respectto theMCPsodoesanyspecificlunar
featurevarywithrespecttotheMEL.

The causes of lunar librations are essentially

twofold: First there are the optical librations

which are the result of the dynamical properties

of the moon,s orbit about the earth, and secondly,

the physical librations which are caused by the

motion of_(_in inertial space due to the small

triaxiality in the moon,s figure.

fa'¢ / Center of earth ___w@

MEL

t o
MCP

\
0

_\ _ MEL
\

\

\ MC P_
Orbital motion

The following sketch is a view of the earth-

moon system as seen from a point in the ecliptic

plane. Effects of physical librations on I

(p < 0. 045 ° ) are ignored for the purpose of this
demonstration.

I = 1.535°_ -_r,

_'___Moon

"r
_ _ _ _ l. Lunar
• _ / i _ 5.2° I, equator

i I Ecliptic _ (m I [

_ _ Moon's orbital plane (MOP._.!..._)
Moon

I
I

The inclination of the mean lunar equator to

the ecliptic is denoted by I and is constant

(1.535°). Now an observer at the earth,s center

would note a more exposed northern hemisphere

at (I + i = -6.7 °) and one-half month later
em

would view a more exposed southern hemisphere

(I + i = +6 7°). This apparent oscillation of
em

the moon is termed the "optical libration in

latitude " with a variation from approximately

+ 7 ° to -7 ° in a period of approximately 1 lunar

month.

The following sketch illustrates the earth-

moon system when viewed from above the

ecliptic. During the interval (t I - t o ) the moon

has a constant rotational rate w(_and rotates

through an angle 0, = (t 1 - to) _0 C. Because the

orbital motion of the moon about the earth is

elliptic, the central angle0 # 0% The difference

(l,) is called the " optical libration in longitude"

with a variation from approximately + 8 ° to - 8 °

in a period of approximately 1 lunar month.

The much smaller physical librations (order

of 0.04 °) are the result of rigid body dynamics

and the moon,s triaxial characteristics. These

characteristics cause the direction of the moon,s

spin axis(_(_) to oscillate in inertial space about
a "mean" po-sition. The periods of the physical

librations in longitude and latitude are approxi-

mately i year and 6 years, respectively. If these

minor librations are ignored, an uncertainty of

i000 m can arise for any given surface co-
ordinates. Thus it can be seen that for pre-

liminary mission planning, the physical librations

can be disregarded. However they cannot be

eliminated from detailed planning, especially for

"landing" type missions. This becomes more
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evident when considering the fact that landing

vehicles within this decade will be severely

limited in hovering and translational capability.

Furthermore, guidance inaccuracies may demand

a large part of this capability. Physical librations

can be compensated for prior to leaving earth or

at a later time during flight depending on the

guidance scheme. From the above discussion,

it is seen that the librations are continually

changing i___nmagnitude. Also, the path traced

by the MEL about the MCP is complex.____This is

evidenced in Fig. 3. In this figure the MEL loci

are shown for the month of October in the years

1966 and 1967. Note the almost complete change

in the trace characteristics and particularly the

rapid movement across the moon,s equatorial

plane (up to 2°/day).

This movement has considerable influence on

the planning of translunar and transearth tra-

jectory orientations. Even during an earth launch

time tolerance of 2 hr, a landing site can be dis-

placed from a planned translunar trajectory to the

site by 5000 m if librations are not accounted for

during this time. Aborts occurring during a stay

on the moon will markedly influence the earth

return trajectories as compared to the original

flight plan. Thus, the librations of the moon add

both position and time constraints to the lunar

mission.

Methods given in literature (Refs. 2 and 6) for

determining librations can become cumbersome

because interplanetary digital trajectory pro-

grams do and will most likely use stored positional

data of the moon in geocentric rectangular co-

ordinates. Thus, the following approach for

simulating or determining librations on the com-

puter is practical. The object is to obtain

librations in longitude and latitude beyoncl pub-

lished ephemeris data from geocentric equatorial

coordinates of the moon using transformations

of coordinates in terms of fundamental arguments.

First, the reference coordinate Systems are

shown in the following sketch. The numerical

values in the following equations have been

obtained from Ref. I:

EML (earth moon line) has components

(x_, Y(I ' z_) in geocentric equatorial

coordinates

(mean obliquity of the ecliptic)

= 23.462294 _ - 0.0130125 ° T

- 0.164 ° • 10 -5 T 2 +

0.0503° • 10-5 T 3 (115)

T denotes the time measured in Julian

centuries of 36525 ephemeris days from the

epoch (1900 Jan 0.5 ET). See Table i for

Julian day numbers for the years 1950 through

2000.

Center of earth

Mean equinox

of date

Z
O

• _ Moon

x_
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,q (the longitude of the mean ascending node
of the lunar orbit on the ecliptic, measured

from the mean equinox of date)

fl = 259.183275 ° - 0.052953922 ° d

+ 0.002078 ° T 2 + 0.2 ° • 10-5T 3 (116)

d denotes the number of ephemeris days

from the epoch.

The transformation matrix giving EML in the

ecliptic reference frame is:

I!i!(slxf2 _ Icos sinf2sine sinai

(EML)f2 = y_= s f_lcos _ costilsin e cos YO
I I

l-sin _ Icos c _J\z G (_/

(i17)

In Ref. 2, optical librations are calculated

using Hayn,s value of 1. 535 ° for the inclination
(I) of the mean lunar equator to the ecliptic. The
ascending node of the mean lunar equator on the
ecliptic is at the descending node of the mean
lunar orbit (_ ¢ 180°). From the following sketch
the _ relative to the mean equatorial plane of

the moon can be found.

iF
za_ tz., a

/
/ Center of I ! /_

/ moon __ MEL

x m'e 4 = X_quato YrYiaql'_2

plane of moon

MEL (moon-earth line) = - EML

The transformation is given by:

_ _. f_/ sinI cos z

From the following sketch and the afore-
mentioned definition of the MCP (the condition
that the center of the apparent disk of the moon
be at the mean center), the librations in longitude
and latitude vanish simultaneously when (_= _2 and

[_ = 180 o.

Mean lunar equator

The symbols f' and b, are the optical librations
in longitude and latitude, respectively. The mean
longitude of the moon C, is given by the following
series from Ref. 1.

(_ = 270. 434164 ° + 13. 1763965286 ° d

- 0.001133 ° T 2 + 0.19. 10-5°T 3 (119)

and is measured in the ecliptic from the mean

equinox of date to the mean ascending node of the
lunar orbit and then aIong the orbit. The prime

meridian rotates at a rate (c0(_) which is equal to

the mean orbital motion n_of the moon. The

optical libration in latitude is given by:

-l[Z_' _ tb : 900- cos \i M-- LI (120)

Now the vector B is found by taking the vector

triple product z(_,_x (MEL x z(_,f2). There-_,

fore @, the angle measured from x(_, f_ to B is

-1 • x (_, f_

, cos I _1

or

= COS

\I BI-I
(121)

Thus, the optical libration in longitude equals:

_' = ; - (C- f?) - 180o • (122)

These librations must be adjusted to account

for the ,wobble, motion mentioned previously of

the lunar north pole (_). Because of this
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motion, the actual inclination and descending node

of the lunar equator on the ecliptic are I + O and

_? + or. It is well to note here that the physical
librations are made up of forced and free librations.

Free libration of the moon due to the gyroscopic

motion has not been detected with certainty by

observation and is neglected. The above equation
represents the forced librations due to external

torques (sun, earth, planets) on the moon.

From the Explanatory Supplement, Ref, 2,
the physical librations (5_ and $b) can be found

by the use of the following formulas:

5f = 0.003 sin ((_ -F,) - 0.005 sin 2 (F'- _2)

- 0.016 sin g@+ 0.018 5Cb, I
5b = M+N sin _'

(123)

where

T

I _ I

"_ the mean longitude of the lunar

perigee, measured in the ecliptic
from the mean equinox of date to

the mean ascending node of the lunar

orbit, and then along the orbit

= 334.329556o+ 0.1114040803Od

- 0.010325 ° T 2 - 0.12 ° 10-4T 3

_@ "_ mean anomaly of the sun

(124)

l@ = 358. 47583 + 0.98560267 °d

- 0.00015 ° T 2 - 0.3 ° • 10-5T 3

5C = M sin _' - N

(125)

M = 0.04 ° sin (F' - f2) - 0.003 ° sin

(_-_)

N = 0.02°eos(F , - f_)+O. OO3Ocos

(C - a)

(126)

The values of the fundamental arguments given in
Eqs (115), (119), (124) and (125) have been calcu-

lated from the Hill-Brown lunar theory. The actual

librations are the sums of the optical and physical

librations in longitude and latitude, respectively

(libration in longitude) = _' + 6f

(127)

b (libration in latitude) = b' + 6b

For reference and mission planning purposes,
a future addendum will contain the actual libra-

tions in one-day intervals.

As mentioned in Section C-I above, a future

addendum will present the geocentric rectangular
coordinates of the moon referred to the mean

equinox of date in one-half day intervals. The

components (x@_,yo_,zo(_) are in earth radii for

the years 1965 to 1969 and stored in the interplane

tary trajectory program (Ref. 18). A continuous

readout of librations can be obtained by curve

fitting the positional data of the moon and utili-

zing the formulas presented in this section.
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TABLE 1

Julian Day Numbers for the Years 1950-2000
(based on Greenwich Noon)

Year Jan. 0.

1950 243 3282

1951 3647
1952 4012

1953 4378
1954 4743

1955 243 5108
1956 5473

1957 5839
1958 6204

1959 6569

1960 243 6934

1961 7300
1962 7665

1963 8030
1964 8395

1965 243 8761

1966 9126
1967 9491

1968 9856
1969 244 O222

1970 244 O587

1971 0952
1972 1317
1973 1683

1974 2048

1975 244 2413

1976 2778
1_77 3144

1978 3509
1979 3874

1980 244 4239
1981 4605

1982 4970
1983 5335

1984 5700

1985 244 6066
1986 6431

1987 6796
1988 7161
1989 7527

1990 244 7892

1991 8257
1992 8622

1993 8988
1994 9353

1995 244 9718

1996 245 0O83
1997 O449

1998 0814
1999 245 1179

5 Feb. 0.5 Mar. 0.5 Apr. 0.5 May0.5 June0.5 July0.5 Aug. 0.5 Sept. 0. 5 Oct. 0.5 Nov. 0.5 Dec. 0.5

3313 3341 3372 3402 3433 3463 3494 3525 3555 3586 3616

3678 3706 3737 3767 3798 3828 3859 3890 3920 3951 3981
4043 4072 4103 4133 4164 4194 4225 4256 4286 4317 4347

4409 4437 4468 4498 4529 4559 4590 4621 4651 4682 4712
4774 4802 4833 4863 4894 4924 4955 4986 5016 5047 5077

5139 5167 5198 5228 5259 5289 5320 5351 5381 5412 5442

5504 5533 5564 5594 5625 5655 5686 5717 5747 5778 5808
5870 5898 5929 5959 5990 6020 6051 6082 6112 6143 6173

6235 6263 6294 6324 6355 6385 6416 6447 6477 6508 6_38
6600 6628 6659 6689 6720 6750 6781 6812 6842 6873 6903

6965 6994 7025 7055 7086 7116 7147 7178 7208 7239 7269
7331 7359 7390 7420 7451 7481 7512 7543 7573 7604 7634
7696 7724 7750 7785 7816 7846 7877 7908 7938 7969 7999

8061 8089 8120 8150 8181 8211 8242 8273 8303 8334 8364

8426 8455 8486 8516 8547 8577 8608 8639 8669 8700 8730

8792 8820 8851 8881 8912 8942 8973 9004 9034 9065 9095

9157 9185 9216 9246 9277 9307 9338 9369 9399 9430 9460

9522 9550 9581 9611 9642 9672 9703 9734 9764 9795 9825
9887 9916 9947 9977 *0008 =_0038 *0069 *0100 _:_0130 .0161 _0191

0253 0281 0312 0342 0373 0403 0434 0465 0495 0526 0556

0618 0646 0677 0707 0738 0768 0799 0830 0860 0891 0921

0983 1011 1042 1072 1103 1133 1164 1195 1225 1256 1286
1348 1377 1408 1438 1469 1499 1530 1561 1591 1622 1652

1714 1742 1773 1803 1834 1864 1895 1926 1956 1987 2017
2079 2107 2138 2168 2199 2229 2260 2291 2321 2352 2382

2444 2472 2503 2533 2564 2594 2625 2656 2686 2717 2747

2809 2838 2869 2899 2930 2960 2991 3022 3052 3083 3113

3175 3203 3234 3264 3295 3325 3356 3387 3417 3448 3478
3540 3568 3599 3629 3660 3690 3721 3752 3782 3813 3843

3905 3933 3964 3994 4025 4055 4086 4117 4147 4178 4208

4270 4299 4330 4360 4391 4421 4452 4483 4513 4544 4574

4636 4664 4695 4725 4756 4786 4817 4848 4878 4909 4939
5001 5029 5060 5090 5121 5151 5182 5213 5243 5274 5304
5366 5394 5425 5455 5486 5516 5547 5578 5608 5639 5669

5731 5760 5791 5821 5852 5882 5913 5944 5974 6005 6035

6097 6125 6156 6186 6217 6247 6278 6309 6339 6370 6400
6462 6490 6521 6551 6582 6612 6643 6674 6704 6735 6765

6827 6855 6886 6916 6947 6977 7008 7039 7069 7100 7130
7192 7221 7252 7282 7313 7343 7374 7405 7435 7466 7496

7558 7586 7617 7647 7678 7708 7739 7770 7800 7831 7861

7923 7951 7982 8012 8043 8073 8104 8135 8165 8196 8226
8288 8316 8347 8377 8408 8438 8469 8500 8530 8561 8591

8653 8682 8713 8743 8774 8804 8835 8866 8896 8927 8957
9019 9047 9078 9108 9139 9169 9200 9231 9261 9292 9322
9384 9412 9443 9473 9504 9534 9565 9596 9626 9657 9687

9749 9777 9808 9838 9869 9899 9930 9961 9991 *0022 *0052
0114 0143 0174 0204 0235 0265 0296 0327 0357 0388 0418

0480 0508 0539 0569 0600 0630 0661 0692 0722 0753 0783
0845 0873 0904 0934 0965 0995 1026 1057 1087 1118 1148
1210 1238 1269 1299 1330 1360 1391 1422 1452 1483 1513

2000 245 1544 1575 1604 1635 1665 1696 1726 1757 1788 1818 1849 1879

1900 Jan 0.5 ET

1950 Jan 0.5 ET

: Julian Day 2,415,020.0 =

= Julian Day 2,433,282.0 =

Greenwich Noon,

Greenwich Noon,

January 1, 1900, a common epoch
January 1, 1950, another common epoch and

first entry in this table
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Fig. 1. Selenographic Coordinate System Superimposed on a Lunar Photograpb
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IV. TRAJECTORIES IN THE EARTH-MOON SYSTEM

This chapter will apply the introductory ma-

terial on kinematics and dynamics of the earth-

moon system from Chapter III to space vehicle

trajectories in earth-moon space, The force
models and methods of solving the equations of

motion will be discussed with emphasis on the

approximations introduced and the usefulness of

various trajectory programs. Some typical tra-

jectories in earth-moon space will be sketched
and described briefly in order to illustrate the

types of lunar missions to be contemplated in
succeeding chapters.

Section A gives a classification of lunar tra-

jectories, and introduces the nomenclature of
lunar trajectories to facilitate their visualization
when results will be presented later in the manual.

Section B describes the various force models that

are used in lunar trajectory calculation, i.e. :

(1) the restricted two-body trajectories for which

analytical solutions are available, (2) their patch-

ing to form a complete earth-moon trajectory,
(3) restricted three-body trajectories, (4) n-body

trajectories with earth oblateness and triaxiality
of the moon incluJed, as welt as a discussion of

nongravitational forces and their simulation on

the digital computer. Finally, Section C gives

a description of the Voice trajectory computation
technique which has been used extensively in ob-

taining lunar trajectories in this manual.

A. CLASSIFICATION AND NOMENCLATURE

OF LUNAR MISSIONS AND TRAJECTORIES

1. General Considerations

Trajectory studies can be divided into two

broad groups, feasibility and precision trajec-
tories. Feasibility trajectories are used for

preliminary vehicle performance studies such

as injection requirements, maneuvering require-
ments, tolerances on flight parameters, guidance

accuracies, observational constraints. Pre-

cision trajectories, on the other hand, are used

for the detailed planning of an actual flight, In

this latter approach the best values of param-

eters influencing the trajectory may be used to

compute a nominal path, or to include correc-
tional information, based on observations of the

vehicle, in the trajectory calculation to obtain a

path that is frequently updated during the flight.
In this handbook most of the computed trajec-

tories are of the feasibility type

For the present qualitative discussion of

lunar trajectories and missions it is not neces-

sary to consider all the forces that act on the

space vehicle, but only those which determine
the characteristics of the lunar trajectories.

The assumptions made in this section are:

(i) Gravitational effects of the sun and

planets on lunar trajectories can be

neglected because the region where

the gravitational attraction of the
earth and moon predominate extends

in all directions about three times the

earth-moon distance from earth.

(2) Atmospheric drag is neglected during

the brief portion of the lunar trajec-

tory in the earth,s atmosphere, since

the space veilicle reaches tile required

velocity for passage to the moon while
it is more titan 100 km above the sur-

face of the earth.

(3) Lunar trajectories are assumed bal-

listic, i.e., no thrust forces act on
the vehicle. Lunar missions, on the

other hanfl, may include phases when

large thrust forces alter the subse-
quent vehicle trajectory. Lunar mis-
sions with a continuous low thrust will

not be considered here.

(4) The earth and moon are in circular
orbits around the earth-moon bary-

center (the small eccentricity of the

lunar orbit can be neglected in quali-

tative trajectory discussions).

These facts suggest the use of the rest, ricted

three-body problem discussed in Chapter III as
a force model for discussion of lunar trajec

tortes. Sometimes an even simpler force model

may describe the trajectory:

Two-body equations (cacti1-space vehicle)
are used on most of the trajectory to the moon,

and at some point near the moon a transformation

to selenocentrie coordinates is performed and

two-body equations (moon-space veilicle) are
used to describe the trajectory near the moon.

This last simplification will be discussed further

in Sections B-1 and C of the present chapter.

Any sketches of trajectories will be made
either in nonrotating coordinates XeVeZ e with

origin at the center of the earth, nonrotating

coordinates XmYmZm with origin at the center

of the moon, or in rotating coordinates xRYHZH

with origin at the barycenter and the x R-axis

along the earth-moon line in the direction of the
moon (see sketch on page IV-20) A typical lunar

trajectory is ptotted to scale in geocentric non-

rotating coorttinates in Fig. 1 and in barycentric

rotating coordinates in Fig. 2 with the time from

injection indicated on each trajectory. Ti_e non-

rotating trajectory shows the characteristic shape
of a two-body conic section near the earth, and it

is not until the moon is approached closely that

the moon,s gravitational attraction modifies the

shape of this conic section. The path in the ro-

tating coordinate system is approximately as it

would appear to an observer at the center of the
moon, since the moon,s mean orbital ,notion is

equal to the rotational rate about its axis. The

qualification ,,approximately" is included be-
cause the difference between the true and mean

orbital motion due to eccentricity e_ anti the

small inclination of the hmar spin axis to its

orbital plane (both given by optical librations)
cause the lunar observer to see a slitthtly different

trajectory as the xRY R coordinate trace.
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As the title of this section indicates, lunar

flights may be classified either into classes of

trajectories, as was done notably by Egorov

(Ref. l) and Buchheim (Hcf. 2), i.e., the tra-

jectories are subdivided by their shape in an

inertial or rotating coordinate system, or lunar

flights may be classified into classes of missions

according to the purpose of the flight. In general,

the mission classification is broader since ,me

mission, or one lunar flight, may consist of

several trajectory classes. In this chapter, a

lunar flight is defined as a space flight, on which

the velocity at the initial point of the trajectory

equals or exceeds the minimum velocity to leave

the earth at the initial point and whose primary

mission goal is in earth-moon space. Thus the

boost or earth orbit phase of any trajectory will

not be considered here, nor will any part of it

outside of a region where the gravitational at-
traction of the earth and moon predominate. The

table below classifies such lunar flights into the

various mission and trajectory classes:

Mission Class Trajectory Class

1. Lunar probes Trajectories near mini-

mum velocities

Approach trajectories

Impact trajectories (bard

landing)

Impact trajectories (soft
landing)

2. Circumlunar and Circumlunar trajectories

allunar missions (nonperiodic and periodic)

Allunar trajectories (non-
periodic and periodic)

3. Lunar orbit mis- Impact trajectories

sions Approach trajectories

Circumlunar trajectories

Allunar trajectories
Orbits around tire moon

4. Landing missions Approach trajectories

Circumlunar trajectories

Allunar trajectories

Orbits around the moon

Ascent and descent tra-

jectories

Impact tcajectocies

5. Space stations Libration point buoys
' !

_. Lunar passages Approach trajectories

to escape (accelerating or braking
approaches)

The hmar missions in the classification above

have been arranged chronologically, i.e., a

planned exploration of the moon and solar system

would at fh'st involve hmar probes, then eircum-

hmar (passing behind the moon) or alhmar (pas-

sing in front of the moon) missions, lunar orbits,

landings on the moon, establishment of long-term

space stations in earth-moon space, and finally
the use of the gravitational attraction of the moon

to accelerate or decelerate space vehicles on their

journey to the planets. Of course there may be a

certain amount of overlapping so that for any
given time the plan may call for lunar f)robes us

well as circumlunar missions, or for circum-

lunar, lunar orbit, as well as landing missions.

Most of the classes of lunar missions may be

used for research and exploration, for military
roles, as well as exploitation and colonization of

the moon. Since the lunar flight manual is es-
sentially mission-oriented, it is preferable to

discuss qualitatively each class of mission and

describe the various types of trajectories as-
sociated with the mission in the order of their

first appearance.

Prior' to this classification it is instructive

to compare approximate propulsion require-
ments for typical lunar missions from earth

launch. These requirements are given below in

terms of the characteristic velocity increment

_V, or the velocity the space vehicle would at-
tain in gravity-free space if it were accelerated

in a straight line by the equivalent amount of
rocket burning:

1,

Mission _V (kin/see)

Lunar probe without

rocket burning near the
moon 12.5

2. Circumluaar mission 12.5

3, Circumlunur mission

with deceleration by rock-
ets to earth orbit ve-

locity 16

4. Establishment of a lunar

orbit 13.5

5. Establishment of a lunar

orbit return to earth and

deceleration by rockets

to earth orbit w_lo<ib, 18

6. Landing on the moon 14.5

7. Landing on the moon with
return to earth orbit ve-

locity 20.0

The higher velocities in missions 3 through

7 reflect additional rocket burning in the vicinity
of the moon or during earth return. The return

to earth orbit and eventually to an earth landing

base may be accomplished largely by aerody-
namic maneuveritu_ and hence reduce the total
propulsion requirements for a mission with
earth retu cu.

2. Lunar Probes

A lunar probe is defined as a one-way, un-
manned space vehicle for the collection of scien-

tific data passing the vicinity of the moon bat
which toes not pass behind the moon. The tra-

jectory classes associated with probes are bal-

listic except for possible braking prior to hmar
impact. Probes :ire used to obtain scientific data

in earth-moon sl):ice , near the tTloon, an:t on the

lunar surface as the name implies. Typical
measurements may include (Ref. 2):

(1) A delermination of the mass of the

I?] oon.
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(2) Measurement of magnetic fields,

electromagnetic and corpuscular
radiation, meteoritic densities and
of other environmental data in earth-

moon space.

(3) i)etermination of tire physical proper-

ties of the very tenuous hmar at-

tn o sphe re.

(4) Determination of the composition.

properties, temperature variation,

and radioactivity of the lunar surface.

(5) Determination of the seismic proper-
ties of the hmar interior.

In addition, lunar probes may serve as engineer-

ing test vehicles for the evaluation of space vehicle

systems such as tracking, communication, environ-

mental control and power ,systems.

The associated trajectory classes may be:

(i) Trajectories near minimum velocities,

or those which have just sufficient

energy to eventually leave the earth,
and will, at least initially, return to

the vicinity of the earth several times.

(2) Approach trajectories, which have a

higher energy, and are defined as

trajectories which reach the vicinity
of the moon on the first orbit but

miss it by some distance.

(3) Impact trajectories which directly
strike the moon either without rocket

braking or with rocket braking near
the moon. Impact trajectories can be

classified further. If the impact ve-

locity on the lunar surface is of the

order of tens of m/see, the impact can

be classified as a soft landing while

impact speeds of about 100 m/see and

above are called hard landings.

3. Trajectories near minimum velocities;

transit time

In this section tire results of the previous re-

stricted three-body discussion will be applied

to this trajectory class, its characteristics will
be discussed in detail, and the strong effect of

injection velocity on transit time near minimum
velocities will be illustrated.

The ballistic trajectory of a space vehicle is

completely determined by its initial position and

velocity. These injection conditions (or initial
conditions for lunar trajectories near earth) are

usually given either in earth-centered trajectory

coordinates XeYeZe and velocity, components

(ix
"" " " where k e
XeYeZe' e = _-t- ' or in terms of re/` ,

Ve_' Ye and qe (for trajectories in the n]oon.s

orbital plane) as illustrated in the following
sketch:

l,x R

VeA

A subscript zero is used to specify injection

conditions. Injection time must be held within

close tolerances since the earth, moon, an, t

space vehicle all move quite rapidly with re-

spect to each other.

It was shown in Subsection B-2 Chapter III

that tire tnininrutn velocily to reach the moon froln

earth corresf)onded to a value of C 2 = 3. 34367

(km/sec) 2 for" the Jacobi constant. This vaIue

was related to the injection velocity in ttre ro-

tating xRYtiZ R coordinate system, VRA, tire

magnitude of VRA being independent of its di-

rection and nearly independent of the angle be-

tween the initial radius vector _R/X =_eA and

the xR-axis. The maximum variation of VRA

with this angle was of the order of 0.1 m/see

for re& = 7378.2 km and less for smaller values

of teA. However, a change in injection altitude

from 100 km (tea E = 6478.2 km) to 1000 km

(re_ = 7378.2 kin) decreased the minimum VI{ 5

from 10942.2 m/see to 10233.2 m/see.

It is now necessary to relate the injection ve-

locityin rotating coordinates, _RA0 (xRs0'

Z l.{___ 0 )°YR_0' to tire velocity in geocentric non-
_, . o •

rotating coordinates VeA 0 (Xe/_0, Ye_0' ZeA0)"

The general transformation between the velocity

components of the two coordinate systems was

given by Eq (86) of Chapter III,

yeA(= in (_ + _0<

!
Ze/d i 0

]xRa _C

!
k,,Zlt _,

t) - sin (m + 0_< t) 0 /

]t) cos (_ +_oo< t) 0

0 1

YRA. _ t (1)

(xHA + r vo%
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where
%

is the lunar unit or earm-moon distance used for

the circular restricted three-body problem,

_ = 2. 661699484 x 10 -6 rad/sec is the rotational

rate of the earth-moon line around the baryeenter,

and _ is the initial angle between the nonrotating
and rotating coordinate systems.

If the matrix multiplication is performed
2

VeA is obtained as:

YeA
2 2 2 [y2RA

= VRA + ,_¢ + (XRA

+F,_ v)2_+ 2,_0_ [*RA yRA

+ YRA (XRA + Po_I v)_ (2)

This expression can be transformed fvrther by
reference to the following sketch:

to the moon

Barycenter

The following relations can be obtained from

the previous sketch:

2 = x 2+ YeA2reA eA = (XRA + I$¢ 1 u)2

2
+ YRA (3)

and

YRA = rcA sin _e" XRA + r®_ v =

re_ cos _e (4)

which yield, after substitution into Eq (2):

2 V 2 2 2
Ve A = RA + reA _$(_ + 2_$_ tea (xRA _in _e

+ _'RA cos ne ) (5)

In terms of the flight path angle relative to earth Vc

XRA sin _e + YRA cos _e = VRA cos Ye'

so that the square of the velocity relative to earth

becomes :

2 2
VeA 2 = VRA2 + reA _oq

+ 2_ SeA VRA cos Ye" (6)

For given values of tea and VRA in the earth-moon

system the velocity relative to earth VeA is a max-

imum if cos Ye = 1 (Ye = 0°) and it is a minimum if

cos ye =-I (_e : 180° )' or

EVRA A_ I / 2
2 2 - 2_@_ V R+ tea _ reA

[V 22+ VRA]< VeA < RA + tea _°od 2_O_ tea

(7)

i/2

For injection at 100-kin altitude:

reA 0 = 6478.2 kin, VRA 0 = 10942.2 m/sec,

10925. 0 m/see <__ VeA 0 <_ 10959. 4 m/see,

and the minimum velocity relative to earth for

sending a vehicle to the moon is 10925. 0 m/see,

while for injection at 1000-kin altitude:

reA = 7378.2 km, VRA 0 = 10233•2 m/sec,

10213. 6 m/sec <_ VeA 0<_ 10252.8 m/sec

and the minimum velocity relative to earth for

lunar injection at that altitude is 10213.6 m/see.

In each case the maximum value of VeA 0,

(VeA)max, occurs when VeA 0 is perpendicular to

teA in the direction of the moon's rotation as

illustrated in the following sketch:
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The injection flight path angle Ye0 may be used

to classify lunar trajectories. Thus, a space

vehicle trajectory in the direction of the earth-

moon orbital motion(Ye0 < 90 ° ) illustrated in the

previous sketch is known as a direct trajectory.

Since the angular velocity vector of the earth

_O has a component _ cos iem perpendicular to

the earth-moon orbital plane (MOP), a vehicle in

a direct trajectory can capitalize on the rotation of

the earth as well as the orbital motion of the earth

in the MOP as illustrated above. Trajectories

with injection in a sense opposite to _( (_e0>90 °)

are called retrograde traject.ories. The AV penalty

from launch for a retrograde trajectory as com-

pared to a direct trajectory may be as high as

740 m/sec.

The gravitational attraction of the moon on the

lunar trajectory near injection is very small, and

it is possible to approximate the first stages of a

lunar trajectory by a two-body earth-space ve-

hicle problem. In a two-body approximation, the

escape or parabolic velocity at i00 km is

= ___K_ = 11093.2 m/sec
Vep _ tea

which compares with a minimum restricted three-

body velocity of

(VeA) = 10925. 0 m/sec.
rain

The corresponding minimum two and restricted

three-body velocities for injection at I000 km

are:

=
Vep 10394.6 m/sec, (VeA) =rain

10213.6 m/sec

Thus, the minimum three-body velocity is only

about 170 m/sec less than the two-body parabolic

velocity. This indicates that lunar trajectories

for near minimum velocities will approximate

two-body ellipses with initial eccentricities near

1 (i.e., when the gravitational effect of the earth

is predominant). As the injection velocity is in-

creased, the trajectories will approximate two-

body parabolas and hyperbolas in their initial

stages. The extent along the trajectory to the

moon to which this two-body approximation can

be carried will be discussed in Subsection B-ic.

Egorov (Ref. 1) has made a systematic study

of trajectories in the MOP near minimum veloc-

ities. These trajectories with a Jacobi con-

stant of C 3 (refer to Fig. 2, Chapter IID have

the characteristic of an extremely long transit

time in the order of months. For example,

consider trajectories with )_e0 = 0°" In geocen-

tric XeY e coordinates these trajectories closely

approximate two-body ellipses with large eccen-
tricities (near 1). The apogee of these trajec-

tories increases slowly due to lunar perturba-

tions as illustrated in the following sketch;

only the first several orbits of a typical earth-

moon trajectory near minimum velocity are
shown.

First orbit

Second orbit

InitfLal

Th rd orbit

t b_ e

mth of the

Noon

The space vehicle must traverse many such
near-elliptical orbits before it can pass through

the constriction in the C 3 contour near the

double point between the earth and moon and

approach the moon (Fig. 2, Chapter III). In-

crease of Ye0 will increase the required VeA 0

as well as the initial apogee radius of the tra-

jectory.

The time required for a passage from the

earth to the moon depends strongly on the in-

jection velocity. It has been estimated (Ref. i)

that trajectories at the minimum velocity reach

the boundary of their region C 2 in about three

years. This type of trajectory thus is impracti-

cal for most lunar missions. A slight increase

in injection velocity reduces the transit time

significantly as can be noted from the following

trajectories to the moon in the MOP with an in-

jection altitude of h®0 = tea 0 - R e = 175.7 km

and with _e0 = 0°:
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_e0

reAO

Injection Velocity, V.e_O (m/see)

0 o

6478. 2 km

100 kin

10,997

ii,008

ii, 097

ii,278

ii,660

13,450

YeO = O°

reA 0 = 6553.9 km

h(_0 = 175.7 km

10,932

10,943

11,033

11,215

11,600

13,400

Transit Time

to the Moon

(Ill')

120

80

50

35

24

13

The injection velocity for an injection altitude of

100 km has been calculated from the energy integral

of a two-body force model, Eq (9) below, to allow

a direct comparison with tile minimum restricted

three-body velocity of 10959 m/sec.

An increase in injection velocity of 100 m/see
or about 1% near the minimum velocity decreases

the transit time from five to about two days, Eut for

any further significant decrease in transit time

the injection velocity must be increased consider-

ably. Hence, for each lunar mission there is a

tradeoff between a higher injection velocity and

the correspondingly higher fuel toad and a longer
transit time with larger power requirements and

support systems.

b. Approach trajectories

Approach trajectories differ from trajectories
near minimum velocities in that with the former

class the vicinity of the moon may be reached

much quicker than with the latter. The transit

time for typical approach trajectories is approxi-

mately 120 hr at 40 m/sec above minimum re-

stricted three-body escape velocity. This time

is approximately 50 hr at parabolic velocity,
which is 170 m/sec above the minimum re-

stricted three-body escape velocity, and it decreases

to approximately 24 ilr at 500 m/sec above

parabolic velocity. A further increase of injec-

tion velocity above the two-body escape or para-

bolic velocity will not reduce the transit time as

markedly as was possible near the two-body es-

cape velocity. Practical transit times for lunar

approach and impact trajectories vary from

about 30 to 80 hr, which seems to be a good com-

promise between rocket fuel requirements on one

hand, and power and support system requirements
on the other.

Approach trajectories may miss the moon by a

small or large distanee, the major differences

between an approach trajectory from a trajectory

near mxmmum velocity bemg that the mltlal

apogee" of the approach trajectory would be be-

yond the orbit of the moon and the transit time

for passage to the orbit of the moon is less than

five days. If the approach trajectory passes
near the moon, the concept of "apogee" becomes

illusory since the gravitational attraction of the

moon modifies the trajectory shape considerably.
Possible approach trajectories in the vicinity of

the moon are given in the following sketch in

selenoeentric coordinates XmYm, where VmA is

constant vehicle velocity in selenocentric coor-

dinates at entry into the circular region around

the moon, and V is the velocity of the moon i.n
e(

geocentric coordinates which is directed along

the negative Ym-aXis:

Ym

Ym

J
X m

--_ -_x Retrograds TrajectoriesDirect Trajectories V

Around the Moon e_ _ AroUnd the Moon

geA

Velocity Diagram
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As canbeseenfromthis sketch,theapproach
trajectoryleavesthevicinityofthemoon. It
wasshownbyEgorov(Ref. 1)thatthemooncan-
notcapturea spacevehicleonanapproachtra-
jectorysince the vehicle energy corresponds to

that of a hyperbolic selenocentric trajectory if

the attraction of the earth is neglected. The

preceding sketch also shows that the closet' the

approach to the moon, the greater is the "turn-

ing effect" of the moon on the trajectory. While

in the vicinity of the moon, the approach tra-

jectories may, he either direct or retrograde,

depending on whether they pass around the moon
in the direction or against tile direction of the

lunar rotation, as illustrated in the preceding

sketch. However, it is more common(Ref. 1,

for example) to classify approach trajectories

direct (7e0< 90 °) or retrograde (Ye0 > 90°)

at injection near earth.

c. Impact trajectories

In any study of lunar flight the first trajectory
considered is usually an impact trajectory. Such

a trajectory is simply an approach trajectory
which intersects the surface of the moon. Since

the impact may occur on the way out or on the
return, there are now four types of impact tra-

jeetories as opposed to two types of approach

t raje cto tie s :

The first type leaves the earth direct and

intercepts the moon on an ascending arm. A

second type leaves the earth direct but intercepts
the moon on a descending arm. The following

sketch depicts these two types of trajectories in

the geocentric (XeY e) coordinate system with

t O denoting the injection time and t i the impact

time:

Ye

X_t) m

_ Orbital /

r /
,

Moon (ti ;Q'" - -0

goon (t i )

Descending

The third and fourth types are identical lo

the first two except that they leave the earth

retrograde.

Arm

The retrograde trajectories are usually

avoided due to the larger fuel requirements.

Since interception of the moon on a descending

arm has been shown to increase the required

guidance accuracies by two to five times, the

most practical impact probe trajectories are
direct ones which strike the moon on the ascend-

ing arm.

Impact trajectories will hit the surface of
the moon with a velocity of approximately 3000

m/see unless they are retarded by rocket brak-

ing (luring the descent phase, tlard landings,

with impact velocities approximately between
3000 anti 100 m/see, can be used for relatively

simple experiments, while the impact velocity
has to be braked to the order of tens of m/see

for soft landings of delicate equipment for ex-

periments on the moon. Lunar impacts on the

ascending arm are essentially limited to the
visible disk while impacts on the descending arm

occur essentially behind the moon. An impact

trajectory with rocket burning before the landing

will also require some control of the orientation
of the vehicle before and during rocket burning.

3. Circumlunar and Allunar Missions

The next missions of interest are circum-

lunar and allunar missions, which may be manned

or unmanned. Specific lunar and earth return

conditions are somewhat more difficult to achieve

than for lunar probes because of the tighter injec-

tion tolerances. A very desirable feature for
these missions is that the vehicle returns to the

vicinity of the earth ballistically after passing

arbitrarily close to the lunar surface. The
nomenclature of the associated trajectories is

analogous to the mission nomenclature and the

exact definition of each trajectory class will

be given when it is discussed in detail.

Of primary interest are the nonperiodic
circumlunar missions since they allow recon-

naissanee, surveillance and mapping of the

back of the moon. The other trajectory classes

are of less practical interest, but will neverthe-

less be mentioned briefly.

Trajectories that depart from earth, pass
behind the moon while crossing the earth-moon

line in the vicinity of the moon, and again re-

turn to earth ballistically are called nonperiodic

circumlunar trajectories or circumlunar tra-

jectories for short. Basically, these trajectories
can leave the earth either direct as shown in the

following sketch, or retrograde (not shown),

where t is the time of pericynthion, or closest
P

approach to the moon.

A circumlunar trajectory leaving the earth

either direct or retrograde can return to earth by

establishing either a direct or retrograde (and high-

ly elliptic, parabolic or hyperbolic) orbit around

it or impact the earth as indicated in the following
sketch. This would account for six different types

of circumlunar trajectories.

The general t.ype of trajectory is one of the
easiest to achier,', l)tlt spcc:ific cnnditions at
the 111ool/ ttl](I oll eaFt[l F/'tLll'I] are difficult to

obtain d_m to the fact that _'rror sensitivities are
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DrbitNo.
Ye

Moon(tO) _ tOil-Earth

j _ con i
,/ I $ _ ,-

Lunar

\ Orbital

\ Path

(re,5)rain

(kin)

1 6,571

2 42,203

3 82,824

4 116,371

(rmA)min

(km)

very high. For instance, an error of 1 m/sec in

injection velocity (at t O ) can alter the miss distance

by 870 km at the moon and 6650 km at earth. Al-

though highly sensitive, these types of trajectories
are especially suited for photographic missions on

the back side of the moon. These missions may

be manned or unmanned and may be highly desir-
able for future landing flights. In fact, actual

landing missions may utilize such trajectories

because of their inherent safety features (no lunar

impact, ballistic departure and return). One draw-

back of circumlunar trajectories is the inaccess-

ibility of higher lunar latitudes. This is due to the

fact that their inclination to the lunar equatorial

plane is limited to approximately 15 ° (see Chapter
VI).

The total flight time for circumlunar missions

is rather limited by the nature of the trajectory

and depends strongly on the pericynthion altitude.

The following figures are quoted for injection at

an earth altitude of 200 kin. For a pericynthion
altitude of 200 km the total flight time to the moon

and back can vary between 138 and 142 hr, for a

pericynthion altitude of 1000 km it can vary be-

tween 147 and 152 hr, and for a pericynthion alti-
tube of 2000 km it can vary between 155 and 165

hr. In each case the vacuum perigee of the return
trajectory is at 50 kin.

An interesting problem of lunar trajectories is

the possibility of establishing periodic orbits around

the earth and moon which pass behind the moon,

or periodic circumlunar trajectories. The exist-

ence of such orbits was established and several

orbits were calculated in Ref. i. The closest

approach to ti]e earth, (teA)rain , and to the moon,

(rm&)mi n, of several typical orbits is given be-

low from Bef. i*:

<-'These numerical values are based on Egorov's

values of the earth-moon system constants and

are to be regarded as illustrative rather than
accurate.
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Lunar

impact

Lunar

impact

Lunar

impact

A possible

periodic

orbit

Although there is but one class of periodic cir-
cumlunar trajectories ther(_ are an unlimited num-

ber of possible periodic allunar trajectories,

*<'Note added in proof: A new class of circum-

lunar orbits has recently been described. A

brief summary of this class of orbits is given
as Section D.

Analogous to the six types of circumlunar tra-

jectories one may distinguish six types of allunar

trajectories. A typical mission employing an al-
lunar trajectory is photography of the front face

of the moon without the aid of lunar satellite or-
bits.

_/-Ear tehnter

.

xR Lunar Orbital

Path

Opposed to the circumlunar classes of the cor-

responding nonperiodic and periodic trajectories

described above are allunar trajectories, which

pass only in front of the moon while they cross the

earth-moon line in the vicinity of the moon. This

feature is most clearly seen in rotating x R YR co-

ordinates as shown in the following sketch of a

direct nonpertodic allunar trajectory with an im-

pact return to earth. Very frequently the descrip-
tive term "nonperiodic" is dropped, and periodic
allunar trajectories are referred to as allunar

orbits to distinguish them from the allunar tra-
jectories.

As can be seen, the only case that does not impact

the moon, (rmA)min 1738 kin, is Orbit No. 4.

For this trajectory the closest approach to earth,

(reA)min' is almost 20 earth radii or about one-

third of the distance to the moon. Such an orbit

would seem to be of little practical interest, es-

pecially since this class of trajectories is also un-
stable, and small perturbations would cause the

space vehicle to depart from this orbit.**



Periodsof theseallunarorbitsvary from0.5to
1.5 me,andwhilelhcypassin front ofthemoon
astheycrosstic <tirt}l-n]ool]line, their [art}lest
pointfrom eartil is wellbeyondthemoon'sorbit.
Cir(umlunarandallunarperiodicorbitsareof
interest,butit is doubtfulthatsuchorbits could
beestablish('dfor avery longtim_duetotlwir
unstable i_att ul'c.

4. Lunar Orbit Missions

I,unar orbit missions arc complex from a tra-

jectory viewpoiilt since a single mission may con-
sist of several phas( s, each utilizing a different

class of traj_Pclorics. The characteristic feature

of lunar orbit missions is that the primary purpose
of the mission is accomplished during the lunar

orbiting phas{. In other respects the space ve-

hicle may be manned or unmanned; it may make

a one-way trip to the moon or eventually return
to earth if this is a manned mission.

The primary advantage of lunar orbits lies in
the almost unlimited time that the vehicle can

spend in the vicinity of the moon, time which can

be utilized for the gathering of scientific data, the
reconnaissance, surveillance, and mapping of the

moon. Also, no actual landing on the moon is

necessary, and all the attendant structural and

fuel problems do not appear.

The first question in a lunar orbit mission is

whether the moon can capture a space vehicle

launched with a velocity higher than the one cor-

responding to the Jacob[ constant C 2 {see Chapter

IlI, Subsection B-2). It was shown by Egorov (Re[.

1) that it is impossible for lhe moon to capture a

vehicle on an approach trajectory, no matter
what the initial conditions. The question of lunar

capture without thrust remains open for trajec-
tories near minimum velocities which make more

than one orbit around earth before reaching the

vicinity of the moon. When the injection velocity
is between the one corresponding to the Jacobi

constants C 2 and C 4, then the space vehicle can

pass through the constriction near the critical

point between the earth and moon (see Fig. 2,

Chapter III) after more than one orbit around
earth and become a temporary satellite of the

moon before it returns to the vicinity of the

earth.

This class of trajectories is not very practical

since (I) the possible range of injection velocities

is about 1 m/sec (see table on page 21 in Chapter

liD, and the trajectory is very sensitive to solar

and other perturbations, and (2) the transit time is

very long and the transit time is very sensitive to

injection velocity in the possible range of about
1 m/sec. Thus in practice a lunar orbit can only

be achieved by reducing the velocity of the space

vehicle through thrust application near the moon.

,-\ typical lunar orbit mission with return to
earth, illLlstrated in the sketch at the top of the

next page. will consist of:

(1) An earth-to-moon transfer phase which

may be an approach, the first half of a
circumlunar, or, less likely, an impacl

t raj c_cto r) ,

(2) An entry mane'uver into the desired
lunar orbit.

(3) A lunar orbit phase which may last for

several revolutions.

(4) A departure maneuver from the luuav
el'bit.

(5) A moon-to-earth transfer phase which

may be the second half of a circumlunar
trajectory, or an approach or impact

trajectory, and is illustrated in the fol-

lowing sketch in geocentric nonrotating
coordinates x v .

e _ e

The different types of approach, impact, or
circumlunar trajectories have been discussed

above. Lunar orbits may be classified either into

direct or retrograde orbits; they may be either

circular or elliptical with respect to tlne moon,
but their actual shape is continually changing due

to perturbations of the earth, the sun, and the

moon's figure. A more quantitative characteri-
zation of orbits is by their elements (Chapter III,

Subsection A-3).

Entry to and departure maneuvers from lunar

orbits are generally characterized by the char-

acteristic velocity A V of the maneuver.

5. Landing Missions

Closely related to lunar orbit missions are the

lunar landing missions, in which the space vehicle
is on the lunar surface during one phase of the

mission where its primary purpose will be accom-

plished. Landing missions are the most complex

missions from a trajectory point of view. They

may be manned or unmanned, one-way or round

trip. Most likely the lunar landing mission will
use a circumlunar or approach trajectory in the
earth-moon transfer phase, and a lunar _'parking"

orbit to reach the desired landing site, primarily

because of the flexibility in the choice of landing

site and because of the safety features of the cir-

cumlunar or approach trajectory. This type of
mission is known as lunar orbital landing. As

propulsion systems become more reliable, impact

trajectories with a soft landing may be used for

landing missions in areas of the moon which are

easily accessible for impact trajectories. The
latter type of mission is a lunar direct landing.

Lunar landing missions are used for exploration,

supply and logistics, and for establishment of
lunar bases.

A typical lunar landing mission with round trip

to earth consists of:

(1) An earth-to-moon transfer phase which

may be an approach, the first half of a
circumlunar, or, less likely, an impact

trajectory.

(2) An entry maneuver into the desired lunar

orbit (this phase is deleted for direct

landings).

(3) A lunar orbit phase which may last from
a fraction of one to several revolutions

(this phase is deleted for direct landings.)

IV -9



v
e

moon (t o ]

path of

_ the moon

\

\

\

\

\.
\

\

\

t _
e

entry maneuver
into lunar

satellite orbit
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phase

Lunar satellite orbit phase

X
e

transfer
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Note: the dimensions of the

lunar satellite orbit

phase have been

exaggerated

departure maneuver

from lunar

satellite orbit

/

/

O moon

(4) A descent phase to the lunar surface

and landing (possibly using lunar orbit
rendezvous concept as described in the

following paragraph).

(5) A lunar stay of arbitrary duration.

(6) An ascent phase frorn lunar surface.

(7) A lunar orbit phase which may ]ast
fron_ a fraction of one to several revo-

lutions (this phase is deleted for direc_

landings).

(8) A departure maneuver from lunar orbit

(this phase is deleted for direct land-

ings).

(9) A moon-to-earth transfer phase which

may be the second half of a circumlunar

trajectory, an approach or h_pact tra-

jectory.

For one-way landing missions, phases (6) throuah

(9) are deleted. The classes of trajectories uti-

lized for each phase of the landing mission may
be classified further as was discussed above.

A typical one-way lunar orbital landing mission

has been illustrated in the following in cteocer,tric

nonFotatin_ coordinates x v •
_2 _e

A mission which may be regarded as a hybrid

between the lunar orbit and landing missions [s the
lunar orbit rendezvous mission (LOR). In thLs

mission the space vehicle establishes a lunar orbit.

Moon (t o )

I

Lunar

orbital

\ _ath

\
\

\

\

Earth-moo_

transfer

_e

x
_e

cos iem

(approach, circumlunar,

or impact trajectory)

x /---7 iescent

"- / I phase

x/_ /_ landing (ti) .

lu_ar(l _./ _-
orbi,\\77(q)....

• phas,_ \ _ "

(fraction of _ _ entry maneuver into

revolution) lunar orbit

At the proper time a segment of the vehicle, called

the shuttle vehich,, detaches itself, descends to

and lauds on the lunar surface. After the purpose
of the mission on tbc lunar surface has been ac-

complished, the s[/uitle vehicle ascends to lunar

orbit and makes a r'( ndezvous with the orbiting

space vehiclc. 'I'h( _l_,,n and any equipment arc
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transferredtothespacevehicle,whichthenre-
turnsto earthwhiletheemptyshuttleis abandoned
in lunar orbit.

6. Space Stations

It has been proposed by Buchheim (Ref. 2)

that space stations may be established at the five

double points in earth-moon space. He calls such
vehicles libration center buoys. These double

points are in the MOP, they rotate around the

barycenter with the same angular velocity as the
earth and moon, and their fixed location in the

rotating x H YR coordinate system is given in

Subsection B-2 of Chapter II[.

Three of the five double poh-lts are on the earth-

moon line, two fairly near _he moon and the third

is on the opposite side o1" lhe moon about one lunar

unit From earth. The double points on the earth-

moon lines are unstable and lhe apace vehicle
would have to make corrective maneuvers lo

counteract perturbing forces in order to stay near

tile double points for a longer time. The oiher

two double points form equilateral triangles with
the earth and moon and they are stable. Thus,

a space vehicle could stay at these points indefi-

nitely. The sketch on pa_e III-2l in thepre<edin,a

chapter s}nows 1he location of the double points.

Space stations at the double points have also

been called synodic or selenoid satellites. TIney
could be used for beacons in space, as astronomi-

cal observatories, for conducting long-term ex-

periments in earth-moon space and {'or" space
surveillance.

7. Lunar Passages to Escape

The moon can be used to accelerate or decel-

erate a space vehicle for interplanetary missions

or solar probes since the moon and most planets

are very close to the plane of the ecliptic. Accel-

eration of the space vehich can be accomplished

by planning the approach trajectory to pass very
close to the moon and pass out of the vicinity of

the moon in the general direction of the moon's

orbital motion around earth. The following sketch

in geocentric nonrotating coordinates illustrates

this special ease.

Moon (t o )

I

I

Lunar

\ Orbital
Path

\
\

\

\

\

Ye

to_,if_Ear t h

A/_pp _ - e

_-JOJ_C C t? "era

roach trajectory

/with lunar p_ssage on

the ascending arm

..if.loon at vehicle

The maximum velocity increment that can be

gained in approximately 148(/ m/see. The vehicle

acceleration can be accomplished on a descending

arm as well. Retrograde _rajectories can also

be used, but are not really practical because of

1he h_i'_el" ",V reqllire_t ['oF earll? departure. In
a(tdilit)n, the tnoon cart be use(l to {teve!erctle a

space '_ehi(']e l)eccleralh)n would be oblaincd b\

passili_ ()kit of l[]e nlo£)I]Ts ', [cinitv in a direction

Opposite lO [lie luoonls [lll]]il}.i] [11( )_[i(]t] ar()[ll](] tile

earlh.

Tire practicality o[' planning probes in this

fashion is debatable at this time due to the hi-

creased guidance accuracy required. To take
Full advantage of the gravitational attraction of

tile moon, the following items are necessary:

(1) The approach to the moon should be as

close as possible.

(2) The pericymhion, or point of closesl ap-

proach to tlne moon, has to be controlled

closely in order to turn lhc trajectory in
the desired direction (see the preceding
sketch.

(3) The launch time tolerance is very strin-

gent since bo_h the moon and planet or
sun must be in a {'avorabh: position at

time of pericynthion.

8. Nomenclature and Characteristics o['a Cir-

c m{ff_ r Trajeclory

The ballistic lunar trajectories discussed above

belnave very similarly during transit to and from
the moon. A fundamental plane of reference for

such trajectories is the moon's orbital plane
(MOP) used earlier in this section, b'or this dis-

cussion a circumlunar trajectory which is not

restricted to the MOP is used as an example.

The nomenclature used here in identical witI1 that

given in the Voice discussion of _cction (" and

that describing all trajectory data throughout the

remaining chapters.

The outgoing trajectory to the moon is termed
a translunar tra. eetory. It is assuYned that lhe

injection of the space vehicle into the translunar

trajectory occurs near earth, and a ser.ies of

two-body force models is used in the approxima-

tion of the entire trajeclory. The connection or

patching between the different two-booty tra. eetories
occurs near the moon. The eccentricity of the

translunar and transearth (a trajectory from the

vieinily of the moon to the vicinity of the earth)

trajectories is larger than 0.95.

The space vehicle can leave the cartln in four
directions, direct north, direct south, relrograde

north, and retrograde south. These departure

directions are illustrated in the following skeleh.

These departure directions are based on whether

the lrajectory at injection is direct or retrograde,
above (north), or' below (south) the MOP. The

injection position is given by the angle ¢0 which

is measured from the intersection of the trans-

lunar trajectory plane with th,, MOP, which is

the xt(-axis, _o the injection point. The vectors

._ _2 define 1111' LF['IIISILlUaI" trajectory
_e31) and \e-.N_)
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plane where re_ 0 is the radius vector at injection.

The injection flight path angle _e0 is measm'ed

fro_n 2 the local horizontal (a plane perpendicular

to re&0 ) in the direction of the moon's motion

to the velocity vector in the translunar plane (see

preceding sketch). The positive xl::-axis is di-

rected approximately toward the moon at the time

of pericynthion while iVT L is the inclination of

the translunar plane to the MOP at the time of

injection. In the vicinity of the earth (re&<200,000

kin), iVT L is essentially constant being affected

primarily by the oblateness of the earth. As the

vehicle nears the moon (re&-. 2(}O,()01) krn), the

trajectory is influenced to a greater' degree by

the gravitational attraction of the moon, thet'eby

causing iVT L to change. This is demonstFaled

in the following sketch.

_, Consider a space vehicl_e with a position vector

teA and a velocity vector Ve,__ relative to earth.

The space vehicle wii1 be a?celeratt.d toward the

moon by the lunar gravity gq. l)urin_ a short

time interval At the velocity of tlne vehicle will

be changed by an amount AV along the line _ of

action of gq. g

By assuming that re/x remains unchanged, the

resultant velocity of the space vehicle is Ve& 2 =

Ve&l + a_\' . The plane formed by r_] and V _1
g • e'

is different from that formed by re_l and Ve,x2,

and its translunar inclination differs h'on: the

original translunar inclination bv _',iVT[ . tlence,

lunar gravity causes the space vehicle to ch'il't

z E

I

x E

Space £_

"--72

_arth / BYE

t

/
_.ioon

from the original translunar plane, and the rate

of drift, directed toward the moon, increases as

the moon is approached since gq increases. This

drift has occasionally been referred to as the fo-

cusing el'feet of the moon. In addition, the speed

of the space vehicle relative to earth increases as

the moon is neared. The following sketch shows

the drift characteristic of a lunar trajectory.

A similar drift is experienced on the trip back

to earth (transearth trajectory) except that the
vehicle drifts into the final return inclination

iVTI. 2 •

On return _o earth, the transearth trajectory

may appr'oach it ft'om various directions. As was

the case {'or the tt'anslunar injection, the directions
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Initial tranelunar trajectory plane

raJectory- 

Final traneearth trajectory plane

of return are classified as depicted in the follow-

ing sketch, where iVT E is the final inclination of

the transearth trajectory:

_U

_TH

B. FORCE MODELS FOR LUNAR

TRAJECTORY CALCULATIONS

In the preceding section the characteristics and

nomenclature of lunar trajectories were introduced.

These trajectory characteristics could be intro-

duced with very little attention to the physical and

mathematical background of how the position of

the space vehicle as a function of time, or its tra-

jectory, is obtained. However, in any quantitative

work, be it precise or approximate, it is necessary

to know what physical model underlies the calcula-

tions and by what mathematical method the trajec-

tory was obtained. The emphasis in the present
section will be on the assumed force model for

deriving the equations of motion since the analyti-
cal and numerical methods of solving these equa-

tions have been discussed in Chapter IV of Ref. 3.

Various degrees of sophistication are possible

in the description of the forces acting on a vehicle
in the earth-moon environment. These force

models vary in complexity as does the ease as

welt as cost of generating trajectories and obtain-

ing values for trajectory parameters for a given

lunar mission. Rough approximations should not

be discarded simply because they are approxima-

tions. Different approximations in the force model

vary in their sensitivity to different parameters,

and a very crude approximation for one parameter

may be an excellent or at least an adequate one
for another, depending on the ultimate use of the

generated trajectories.

In general, the relative error between two

separate trajectories of a given force model is
smaller than the absolute error between a trajec-

tory using the given force model and one actually
flown in the earth-moon environment. Hence, a

very simple force model may be used to restrict

the range of each trajectory parameter for the
required lunar mission as well as to obtain the
allowable errors in initial conditions for success-

ful completion of the mission and to obtain guid-

ance sensitivities. Any conclusions drawn from

trajectories obtained from the simple model may

then be verified by generating a small number of

trajectories using a more sophisticated force
model.

In the following text, various force models

that have been employed in generating lunar tra-

jectories are discussed in the order of increasing

cornplexity, and quantitative differences between

the models are given whenever possible.

i. Succession of Two-Body Trajectories

The simplest approach to lunar trajectory
studies is to treat the transit of a vehicle from

earth to moon as a succession of restricted two-

body problems. In the initial phase of flight the

vehicle is assumed to be in the earth's gravita-

tional field alone and its mass Mzx is negligible

compared to the mass of the earth _Io At some

point along the trajectory the vehicle will pass into

a region where the moon's field is predominant.
It will then be assumed to be in the moon's field

alone and its mass M A is negligible compared to

the mass of the moon M{I . This approach allows

a splitting of the trajectory determination into
various phases, namelythe study of (1) planar dy-

namics of the earth's field, (2) transition from
earth to moon influence where the criteria for

passing from phase (1) to the next phase are dis-
cussed, (3) planar dynamics of the lunar field,

and (4) three-dimensional effects when the vehicle

is not in the moon's orbital plane. Many char-

acteristics of lunar trajectories may be introduced

logically and studied on the basis of this approach.

It is obvious that this force model, like any

other model, will be more accurate for short

lunar missions than for longer ones, since the

neglected effects (discussed below) result from

accelerations acting over the entire transit time.

This approach is expected to be reasonably good

for lunar impact trajectories, and for circumlunar

flight. However, prolonged flights near the moon,
such as lunar satellites, should be analyzed by use

of more exact models.

a. Planar dynamics of the earth's field

For this two-body problem the vehicle moves

in a plane passing through the earth's center. The
moon revolves around the earth in the same plane

IV-13



withanangularvelocitya_ at a meandistance
ro_ = 1LU. Themoonis treatedhereasa
masslesspointwithoutinfluenceonthevehicle
trajectory. Thusanynonrotatingeoordinatesys-
temat theearth'scenterof massis inertial. In
inertial planepolarcoordinatesre_ , 0eA , as

shown in the following sketch, the equations of
motion of the space vehicle are:

Initial Moon

f_ _(at injection)/

/

Final Moon_/

\ ;£ /
Earth_ _--_e e_

V_nO

• . • 2__ P't_
rezx - re&0eA - --2--

reA

• • o •

reA0eZ x + 2rezx0e2 x = 0

(8)

Equation (8) yields two first integrals,

2)Ee = eZX + ( cA) - rez x

VeA0 - teA0

2"

h e = re_0e/x = tea 0 VeA 0 cos "_e 0

(9)

where E e and h e are its energy and the magnitude

of its angular momentum per unit mass, respec-

tiveiy. Equation (9) yields _he final two integrals
(see t_ef. 4, for example)

dr

teA0 reA0 2Ee + 2get her

(10)

rol_ h dr r$l h dr

00_ =_ --g-v-.e = _ e
r r 2

2Pc h
teA0 rezx0 2E +___ e

e r 2
r

(11)

IV-14

where t is the total time of flight and 00_ the

total in-plane angle from reA 0 to tel

As is well known, the trajectory obtained

from Eq (8) is a conic section in the plane of the
trajectory with focus at the center of the earth.

It remains to orient the injection point on this

conic section with respect to the moon at injee-
tion by the angle

= 00q ± _D4t, (12)

where the negative sign applies for direct and

the positive sign for retrograde trajectories.

A consistent set of constants required in Eqs
(8) through (11) is"

Pe -- GM e = 398,601.5 km3/sec 2

_e_ = 2.661,699,484 x 10 -6 rad/sec (13)

r01 = 384,747.2 km

Inspection of Eqs (10) and (11) in the light of

Eq (9) reveals (Ref. 4) that the time of flight is

insensitive to the burnout flight path angle _e0'

but is a strong function of energy or burnout

velocity Ve& 0. The total in-plane angle 00_ , on

the other hand, is rather insensitive to VeA 0

and is a strong function of Ye0" These relations

are depicted in the following sketches for a rep-

resentative injection radius of tea 0 = 6740 km.

80-

7O

** 60

_' 50

_°
30

20
---+_-- -- I I t p

i0800 10900 ii000 Iii00 11200

In_ectlon Velocity, Ve_ 0 (m/see)

Since the effect of the moon has been ignored, the
flight time and total in-plane angle for earth-

moon transfer calculated from Eqs (10) and (11)

are approximate. This approximation is relatively

poor near minimum velocities (VeA)mi n and be-

comes progressively better as the injection ve-

locity VeA 0 is inereased (for some comparison

between these approximate and more exaet re-
suits see Ref. 5). For the determination of

visibility from earth, for instance, Eqs (10) and

(11) are sufficiently accurate.

b. Transition from earth-to-moon influence

The transition from the earth to the lunar

gravitational fieId may be made in various ways.

Perhaps the simplest is to stop the translunar
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trajectory, as was done in the previous subsec-

tion, at a radius r@_ , the mean distance to the

moon, and regard these conditions at reA = r@_

as occurring at infinity relative to the moon.

This approach has been taken in Ref. 4, for ex-

ample, and it may be referred to as the mass-

less moon assumption.

However, a more natural transition from the

earth's to the moon's gravitational field may be

taken at the location in space when the ratio of

the lunar disturbing force to the central force

due to the earth's gravitational attraction be-

comes larger than the ratio of the earth' s dis-

turbing force to the central force of the lunar
attraction. This region is called the sphere of

influence of the moon, although it is slightly egg-

shaped with the blunt end facing the earth, rather

than spherical. The boundary of the sphere of

influence of the moon can be found as follows.

Define distances by the following sketch: where

the plane of the paper is the plane of the earth,

moon, and space vehicle at its entry into the

sphere of influence:

A

>,

I

9O

r@(_ = earth-moon distance

tea = earth-space vehicle distance

r_ = moon-space vehicle distance

The gravitational acceleration or force per unit
mass, on the space vehicle due to the moon, or

the lunar gravitational field intensity at the space
vehicle has the magnitude

GM_

f[_A = --g--
r {A

(14)

its acceleration due to the earth has the magni-

tude

GM_
f = (15)
(_A 2 '

and the gravitational acceleration of the moon due

to the earth

GM$

f_ = -%r-- (16)

r _

The ratio of the disturbing force of the earth to

the attraction of the moon is given by

-f.
(rej +re_ ) (r_ - rOA )

2 2
(17)

Similarly, the ratio of the disturbing force of the
moon to the attraction of the earth is given by:

f4A f_ = r _A

(ro_ + r_a ) (r_cl - r(_A ) (18)
• 2 2

r_A re4

where

GM_

fq_ = --2---
re_

(19)

is the gravitational acceleration of the earth due

to the moon. The sphere of influence of the moon

is the region

f_A - f06 < f_A - f(I$

f_A fsA

(20)

and its boundary is given by

fe± - f(9_ _ f4± - f(_@ (21)

f(_A feA
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or, if wesubstitutefromtheright-handsides
of Eqs(17)and(18),theboundaryis definedas:

2

r _zx = r@A "

(red +tea )(red -tea )

(req +tea )(%¢ +%a )
(22)

It can be deduced from the previous sketch that

the disturbing effect is largest when the vehicle
is on the earth-moon line between the earth and

moon, and smallest when it is on the opposite side

of the moon from the earth. Calling r(l _ posi-

tive in the former case, negative in the latter,

the radii at these two points of conjunction are:

r@z x = r${ I - r(l A

r{l A = r _ - r A

and Eq (22) can be written:

2/5 1/5

(23)

Equation (23) can be solved by iteration, and the

boundary of the "sphere of influence" of the moon
on the earth-moon line is 51,870 km in front of the

moon and 63,790 km behind the moon for a value

Me

of W = 81. 357. As can be seen from Eq (23), the

"sphere" of influence is not a true sphere but has

a bulge behind the moon.

It is instructive to compute the sphere of
influence of the earth in its assumed circular

orbit around the sun. Equation (23) can be used

directly if we replace the earth symbol by the sun

symbol and the moon symbol by the earth symbol
in that equation:

]VI h 2[5 _r®@ 4 r_z _ .i[5(

(24)

M O

In the sun-earth system _@ - 332,440. Hence

ro® r@A and the spherical region approxi-

mating the earthls sphere of influence is given by

.1.1t5 2/5

0

For a mean solar distance of ro$ = 14!), 53 x lO 6

kin, the "radius" of the earth's sphere of inflLicHce

is

r = 805,000 km,
OA

which is more than twice the mean distance of

the moon from the earth. The moon, as well as

lunar trajectories, is within the earth's sphere

of influence, which justifies the omission of the
gravitational attraction of the sun as a first

approximation to the motion in earth-moon space.

When the space vehicle enters the lunar sphere

of influence, its geocentric inertial position

(XeA" Ye&' Ze /',) and velocity (JCeA , _e/X , _eA )

will be transformed to a selenocentric inertial

position (XmA , YmA' ZmA) and velocity (Xm/,,,

ym A, "ZmA)and its trajectory in the lunar gravi-

tational field will be computed (see the sketch
on page IV-40).

For typical lunar trajectory injection velocities,
the velocity at the moon as given by the method

of residual velocity at infinity is higher than that

given by the method of sphere of influence by
about 1%.

Another region around the moon that has been

defined is the lunar gravisphere or sphere inside

of which the gravitational attraction of the space

vehicle by the moon exceeds the attraction by
earth• On the boundary of the lunar gravisphere,
from Eqs (14) and (15):

2 M( 2
=

fCZk = f_A or r _Z_ _ tea (26)

Numerically, this amounts in the earth-moon

system to a ratio of the vehicle radii of

1/2

rq_--= (b = 0.1109 (27)

It is more convenient to replace the vehicle

distance from earth on the RHS of Eq (26) by

application of the cosine law in the triangle shown
in the following sketch (not drawn to scale).

Lunar

2 2 2

r® A : re( [ + r_A 2rq)([ r([ A cos r_m

IV-16



to obtain the boundary of the lunar grav[sphero"

- cos _m
FI_A =

%¢

1/2
(M_ 2

+ \N-f_ sin qm)

(28)

From the preceding sketch it can be seen that

the lunar gravisphere has a radius rg and center

at r + Arg, where
i/2

=

rg = r_ M_ - 1

N

A r

g

43186.6 krn, ----g-g

%¢
1

= %¢ Me - 1
N-

= 0.1122467LU

4788.0 kin,

Am

_g = 0. 0124445 LU
r

e¢

(29)

The volume of influence of the moon, which is

used in the Voice computer program, is defined

by the relation

rCA
< 0. 175, (30)

reA

a number which was determined empirically from

lunar trajectories. The boundary of thevolume

of influence is given by

1/2

r_A - 0. 175 = k , (31)

rez x v

where k = 1.578 is a constant of proportionality.
v

Hence, the volume of influence is a type of gravi-

sphere with a scale factor k v, larger than the

lunar gravisphere, but one that gives the best
location for transforming from earth to moon

influence in typical lunar trajectories.

to the gravisphere, the volume of infIuence has

a radius r v and center at r_q+ &r v, where

r zv %¢

i12

kvl \EI_-_ 7

k - 2 M@--- 1

v Me

69436.1 km, -- -

r

v

%¢

Similar

A r

V -- %_

(32)

- 0.1804719LU

1
=

Ar

V - 0.0315732 LU12147.7 km,-- -

At the boundary of the volume of influence
the ratio of the lunar to the earth' s gravitational

attraction on the space vehicle is:

2

f_A Me (r$ h_, 0.4014 (33)

The lunar gravisphere has little significance

from the standpoint of trajectories. The erroneous
belief that it is sufficient to reach the point of

equal gravitational attraction or the boundary of

the lunar gravisphere in order to hit the moon
was revealed in trajectory calculations made by

Egorov (Ref. 1). A much more significant re-
gion for trajectory calculations is the lunar vol-
ume of influence since it allows the use of two-

body force models for the best approximation of

three-body or n-body trajectories.

At this point it would be helpful to illustrate
the lunar sphere of influence, gravisphere, and

volume of influence as well as the boundary of

the closed region around the moon obtained from

the Jacobi integral of the restricted three-body

problem (see also Fig. 2 of Chapter III). These

regions around the moon are drawn to scale in

Fig. 3. However, since their maximum and
minimum radii are on the earth-moon line, the

table below gives the intersection of these regions
with the EML and their characteristics:

n luenc,'

t,od_ triton gr,,m

lph_r,' ,,t infku,,r,:e

I

i

!

i

fm f oon t] (beh nd mou,,(kin) (kin) D,,scr_pti,,1, ,,f Region

57 9 48 3% Nv , o ptica[ rt,_kt,t, ar un: t _e lll_m _¢'hneci
• I t /l), thai ,h, cuh_ constant (:_ {so, I, i_ 2 ar,,l iJq (77) [

af tuna )tt_r" IIll rhe houiidar', _o] I;_l'a_t'_ P 'I_pl)

[unal :)rl_it_ from ]ii1)[,[% cs:a]_' _l'ai_'¢'_,,cl_'s

5 , 70 63 790 Near s >hericat l-egio_ _ilh the boron]at", _iv,,n
by t], (23) rlh," tes_ [}it" F[_lt_ I_1 lhv [l_N_ of c'

]_malLol h, tha_ _f lar_r I
t!_o t:o_lv, [l_Eq I

3_, :/_R _i 47,971 [;

57, 2g_ 4 :_:, _az a

It ;s _ dl,'l':_a[ a'L1h Ltlltt t 1:!1-t7 7 kill hehinl th*, /
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Ii shtmldbcremarkedthatthesizeof lh('se
M

variousregionschangeswiththechangeorM@¢
from thevalue81.357adoptedin thismanualand
withanychangein_a_ =2._;61 G!)948.t x 10-6tad/

w_
sec.

(c) Planar dynamics of the lunar fiehl

At the boundary of the lunar re/Son of influence

(sphere of influence, gravisphere or volume of in-

fluence) the geocentric (and so fat" inertial) position
and velocity are transformed to the selenocentric

system by the equations

m_ = re_ - re

= g
Vm_ e& - V_

(34)

In selenocentric coordinates, which are assumed

inertial inside the lunar region of influence, the

energy of the vehicle relative to the moon is posi-

tive and its approach traiectory in this re_i_m is a

hyperbola (see sketch on page IV-6). The equation

of this trajectory in plane polar coordinates (rmA ,

0m&) centered at the moon is given by

h 2
m

u¢
(35)

rmA = 1 +emA cos OmA

where h is the magnitude of the angular momentum
m

per unit mass of the vehicle relative lo the moon,

the an_le 0mA is measured from perieyntlion, and

the eccentricity is given by

era& = + m 2 (36)

ug

_r lily t't_ ]l: _S th( _ (m('m2V per unit mass of lhe vehicle
Ill '

re]alive io lhc m()on. The value for the ]unLtl' gravi-
tional constunl is

km 3

u( : GM(, = 48!}!).4 _ (37)
SCC

All the r'csults ,)1' Kelherian motion (restricted two-

body problem, i.e. , infinitesimal mass of the space
vehicle compared to the mass of lilt: mOOlQ are now

available for fut'ihe[, study of t]w trajectory.

When the nlcthod of "residual" velocities at in-

finity is used (Hcf. .t), lwo useful parameters of

the orbit arc i[]u._trated in the follow inI4 sketch:

Vm_,,: = the velocity relative to the moon at
inl'Jnit3

b = the in,pact pax'ameter, which is the
m perpendicular distance between the

asymptote of the hyperI)olic orbit

(direction of \mA.) and the center of

the moon.

j mZ_Oo

In the method of "residual" velocities at infinity

the magnitude of the angular momentum and enerlty

per unit mass of the vehicle are _iven by

= b V
hill Ill 111 "_.-

(3a,)
i 9

E = V-
rn -2 rn A _

ane X-:,_n_ f',,
/ / i-ln_ecti°n_'_ _ "eli!Jan / X

equatorial L_Ascending node

plane of the moon
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(d) Three-dimensional effects

It was seen in the previous sections that the

planar trajectories were completely described by

the injection conditions reA 0, VeA 0, )Je0" In

addition, the orientation of the conic section with

focus at the center of the earth (which is determined

by the injection conditions) relative to the moon
may be specified by the angle • (see sketch on

page IV- 14). Since the plane of the moon' s motion is
inclined to earth's equatorial plane, and the tra-

jectory plane is, in general, inclined to both, three-
dimensional effects must be considered (Refs. 4,

6, and 7). The geometry is portrayed in the

following sketch.

Ae0 = injection azimuth

_0' = injection latitude (geocentric)

z_0( = longitude difference

6_ = instantaneous declination of the moon

i = inclination of the moon's orbital plane

em to the earth's equatorial plane or maxi-

mum declination of moon

004 = total in-plane angle

iVT L= inclination of the translunar trajectory
plane to the moon's orbital plane

Additional injection parameters required to describe
three-dimensional trajectories are the geocentric

injection latitude _, the injection azimuth Ae0,

the longit<fde difference between the injection point

and the moon at impact A X0_ , the instantaneous

declination of the moon 6_ , and the inclination of

the moon i
em

From spherical trigonometry the total in-plane

angle 00_ is given by

=_in dO_ sin 54 - cos d0_ coS Ae0 (1
COS 00¢

2 (39)
sin 2

- Ae0 cos _

J -:-sin 2 5¢) 1] (1- sin 2 Ae0 cos 2 (?b)

the longitude difference AX0( is

_ cos - sin sin 611
cos _Xoq °°_ _°

cos _} cos 5q
(40)

and the translunar inclination angle iVT L
grees is

iVTL = 180° - (_1 + _2 )

in de-

(41)

where

_l/COS _ sin Ae0

1 = sin _ cos _)_ ' )

_2 = sin-1 (c°s\--c--os -5iem_j

In the following sketches, which have been taken

from Ref. 6, the parameters 004 , AX04 , and iVT L

are plotted as functions of 5q and Ae0, respectively.

In each case injection is assumed to occur at

¢0 = +28.5 °, the latitude of Cape Canaveral, and

lunar inclination i is assumed to be 20 ° . Of
e rn

course, in the general case, the injection latitude

may vary between +90 ° and -90 °, and the lunar

inclination between 18 ° and 28.5 ° .

%

6o

0 ,

-2o

1

-. _

-io o LO
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It is seenft'omthefirst of thepreviou__hrc_,
sketches,that01Idecreaseswith increasin_decli-
nationof themoon,for aninjectionin thenorthcm_
hemisphere.Thetotal in-plan('anglealsodecreases
astheinjectionazimuthis increased.Since.it is
alsoa functionof VeA0, re&0, Te0, the in.]cotton

time depends also o21 the trajectory initial, condi-
tions.

The tongitudc difference GAO( ] behaves similuuly

to the in-plane angle as can be noted from the

middle sketch shown previously. In the first two
sketches the abscissa coincides with the curve

Ae0 = 180", or an injection toward the south. The

last sketch shows that the minimum inclination

angle iVT L for lunar impact occurs when the moon

is soutilbound in its orbit at zero declination. (In

the other hand, impact at the moon when it is at

its maximum southern declination corresponds to

a larger 00¢ and consequently for a given injection

velocity a smaller flight path angle at injection,
which means lower gravity losses during powered

flight from launch to injection. The inclination
angle in this case is somewhat larger, however,

resulting in lower tolerances on initial velocity
due to three-dimensional effects. Initial azimuths

of 90 ° (east) take greatest advantage of the earth's

surface rotational velocity,. Thus some compro-

mise in these parameters is necessary.

This brief discussion shows that lhc geometry of

the earth-moon and vehicle planes plac(_s conslraints

on injection conditions'and defines preferred launch

times throughout the lunar' month. It nmsl be re-
membered that the above discussion does not con-

sider the use of parking orbits to easp the afnrc-

mentioned injection constraints. Chapters V, VI,

IX and XI present data reflecting more practical
aspects of the injection into lunar trajectories.

2. Hestmcued Three-Bed) _ Trajectories

The simplified model discussed in Subsection

B-I, where analytical solutions of tbe equations
of motion were possible, may be complieulud by

adding the moon to the earth-vehicle, restricted

two-body problem. The resultant restricted three-

body problen_ was discussed in some detail in
Chapter llI, Section B in terms of Jacobi's integral.

An analytical solulion of the equations of motion is

no lonltec possible and recourse must be taken to
numerical methods.

In this subsection, vehicle motion, in terms of

the restricted three-body problem, will be con-

sidered, i.e., the mass of the vehicle is negligible

in conlpal'iSoI/ to the mass of the earth and mool_,

and with the earth and moon as spherical bodies

so that they may be considered as point musses.

The ear'th-moon S_'Steln is considered isolated in

space, the two bodies revofvinff in circles about

their center of mass with an angular velocity _ .

The coordinate systems used in conjunction
with this model have been defined in Sectiol_ A of

Chapter III and the/ are shown a_ain in lhe follow-

in_ sketch.

'kO Vehicle Mzx I/"

YR /_--_-'-_m _ [./-B XR

{_ + _ell t

The transfol'mations between tile coordinah_s and

v_qocity componcnls of the various coordinate
systems are sumlnarizcd in Table 1. In lhe ah(_v(.

sketch r 0 (x0, Y0' z 0) is an inertial r,q'er,,nce s l_rs -

tern with orioin at th,_ barycenter (center of mass
o

of the earth and moo_ syste2]l) The t'l{ (Xll , YlI'

z H) s>stem rotates at the same rate as lhe eat'th

and moon about the z0-axis (up f,om lhc paper).

"l'l_u r 0 and rl_ _ystcms have a Conlnloll ol'i_itl and

coincident z0, zt{ axes. The r e (Xc, Yo' ze) s) s-

lem is a nonrotatin_ system with origin at the

center of mass of the earlh and the r
' In (Xnl_ }i/1'

z ) system is ;, _(,nrotatin R s.vst(*m vsilh <,riKin at
in

the cellteF of nlasS ()_ tilt' lll()()ll.

In the i21ortial Felel'ence system, where NowtonWs

see(Jtld ia\g r is vuli_t, the (.(tuations of inoth)n of a
point titaNS l-ej)l.es(_nting lhe space vehicle [t1'(!,

.. (; ]\1¢ _

r0/" = - 3 r(I, c--&

2'{1, (! ._

(; Mq

(-I2)

w he re

u0, e --25 = t'I)_ - r_le

r0, m _.5 r!)-_ - r'I)ni

(1 :_)

It is convetli( i_t i() Irunsforn_ lhe C(]Utlti(}nS (}f

mntion ('i 9 ) l() It/( _ t'_H;_tin:4 (:noFdJn__lte svsten7

(1'1{) I'OI' I}1(I i)t4F!){)_{' (>]" I/UIH(JFiCal cal(:Llitilit)t?s,
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because in the latter system several terms are

constant. This may be done with the aid of the

rotation matrix T(_ + w®( t) given by Eq (47) of

Chapter III and the equations of motion become,

• o - 2

XRA - 2_® 6 YRA = WOq XRA

GM®

3

rR,e--A

(XRA - XR® )

°°

YRA

GM¢
3 (xR& - XRl_ )

rR, m_A

2
+ 2t006 kRA = t0®¢ YRA

GM®

3 YRA

rR, e --A

(44)

RA

GM_

3

rR, m_A

GM O
=

YRA

ZRA

GM

3 ZRA •

PR, rn_A

compare with Eq (70) of Chapter III• where

rR, e_A = rRA - fRO ' rR, m_A = rRA - rR_

(45)

YRe =yRm = 0, and (XRe• XRm) are constants.

The terms 2w®l I YRA and 2_®_ xRAare known

as components of the Coriolis acceleration, and
2 2

the terms w®_ xRAand td@_ YRA are com-

ponents of the centrifugalacceIeration. The equa-

tions of motion, Eq (44), can be integrated numeri-

cally subject to initial conditions on position and

velocity XRA, YRA" ZRA' XRA" YRA" ZRA"

These equations are for" ballistic flight. Space

vehicles, however, may be subject to thrust forces.

These can he included in the trajectory calculations

in two different ways: The thrust forces on the
vehicle may be simulated by additional terms in

the equations of motion, or a large thrust of short

U®

u_

duration may also be simulated by an impulsive

change /',V in inertial velocity _0A of the vehicle.

This new vehicle velocity V0A + AV must be trans-

formed to the rotating x R, YR" ZR coordinate sys-

tern and the new vehicle velocity components to-

gether with the position at the time of the sinmlated

thrust can be regarded as new initial conditions

for a ballistic trajectory.

Before Eq (44) can be solved numerically.

values of the constants G, M®, NI_/ , w®_ , and

T®( are required for the restricted three-body

model. In reality• only four constants are needed

since G never occurs alone. The following con-

sistent set of constants is given for this modeI:

GM® = 398, 601. 5 km3/sec 2

= GM_ ; 4899.4 km3/sec 2
(46)

= 2. 661 699484 x 10 -6 rad/sec

= 384• 747. 2 km --1 LU (lunar unit)

The consistency of the above set of constants

can be checked by Kepler's third law as applied to

two-body (earth, moon) motion,

-3

2 (2 _r) 2 r®_
T -- •

0¢ u® + u_

where r®(_ is the period of rotation of the earth-

moon system. In terms of angular velocity

27r

- '

the consistency relation becomes

_3 u O + u(7
roll - 2 (47)

c0®g

Since the angular velocity can be observed very

accurately, it is customary to assume the anKular

velocity as well as the gravitational constants of

the earth and moon as known, and to determine a

consistent value of lunar unit ro_ The lunar

unit may be regarded, from Eq (47), as the distance
to a fictitious moon in a circular orbit around the

earth (of mass as determined by experiment) whose

mass and Keplerian period coincide with those ob-
served for the moon.

3. Many-Body Trajectories (oblate earth, triaxial
moon}

In the discussion of the previous two force mod-
els, several forces have been neglected. These

can be conveniently divided into gravitational and

nongravitational forces. Fxamples of gravitational
forces to be considered in the earth-moon trajec-

tories arc the attraction of the sun and planets,

the oblateness of the earth, the triaxiality of the
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moon, any inhomogeneities in the earth, and the

dynamical effect of the eccentricity and inclina-
tion of the moon's orbit around the earth. Non-

gravitational forces include solar radiation pres-

sure, atmospheric and meteoritic drag, electro-

magnetic forces, rocket thrust, and relativistic

effects. Many of these forces such as earth

oblateness and atmospheric drag are strongly

related to position, and are sigmificant only in

the vicinity of the earth.

The influence of these factors on translunar

trajectories has been investigated (Fiefs. 2, 8).

The integrated effect of these factors over the

whole trajectory depends on trajectory shape
transit time, and the actual ma_4z_itude of the

forces varies throughout the trajectory The

corrections AVe _ 0 to the initial velocity near"

earth VeA 0 because of these effects are listed

below. They are intended to convey the magni-

tude of each factor compared to the restricted
three-body initial velocity of 10.7 km/sec.

Pe r ce nt

Factor AVeA0 m/sec* VeA0

i. Gravitational

field of the sun

2. Gravitational

fields of planets

3. Oblateness of

the earth

4. Asphericity of

the moon

5. Eccentricity of
moon's orbit

!6. Inclination of
orbit of moon

7. Solar radiation

pressure

B. Meteoroid dis-
turbances

3.0 (Ref. 8)

0. 006

6.0 (Ref. 8)

13.5 (Ref. 8)

6.0 (Ref. 8)

0. 012 (Ref. 8)

O. 03'

0. 06 ':_

0. 13 _:_

0. 06*

:q'ransit time, 2. 5 days. Nominal injection veloc-
ity, 10.7 km/sec. Vehicle with projected area of

about 1 m 2 and weighing 1300 newtons

It is seen that the AVeA 0 corrections for the

sun, oblateness of the earth, eccentricity of moon's

orbit, and the inclination of the orbit of the moon

are significant enough to necessitate the inclusion
of these effects in the determination of initial veloc-

ity in actual trajectory calculations. The aspheric-

ity of the moon will be important in near-moon tra-

jectory computations. These, as well as the other
factors, will be discussed in some detail later in

this chapter.

The equations of motion even in the restricted
three-body problem could not be integrated in closed

fomn, and with the present more complicated force

model, numerical integration is necessary to

obtain the position and velocity of the vehicle as
a function of time. Since the integration tech-

nique can improve the speed and accuracy of ob-

taining a trajectory on the digital computer, a
brief discussion of several techniques useful for

lunar trajectory calculations will be included in
this section.

a. Equations of motion

Consider the equatorial coordinate system

described in Chapter III, Subsection A-l, with

origin at the barycenter and unit vectors
A A A A

xo¢ ' YO_ , zo_ , xo_ in the direction of the

mean vernal equinox, and the xttlq )O_ -plane

parallel to the mean equatorial plane of the earth.

Let M O represent the mass of the earth, Mq that

of the moon, and M A the mass of the vehicle,

where M A < < XI(I ' M A < < 1_I_B

since _O ' '% ' zo^ constitute theThen,

unit vectors of an inertial coordinate system with

origin chosen at the center of mass of the bodies

considered in the. physical model, the equations

of motion of the space vehicle, or the equations of

absoIute motion, are

M A r =
O, 0_ /',

T ,0_ A O'0-_i M. M3 1
r

i=O O, i -+A

(48)

The term r O , 0 + A in the radius vector of the

vehicle from the baryeenter (center of mass)

equatorial coordinates with origin of the bary-

center', ;%, i..A = r_ , O_ A - r_ , O_i" f_i

represents the forces per unit mass due to the

asphericity of the celestial bodies, and nA are

the nongravitational forces per' unit mass acting

on M A.

To obtain the equations of motion of the

space vehicle, Eq (48), in a coordinate system
with the origin at the center of the earth, Eq (49),

the equations of motion of the earth (neglecting

the gravitational attraction of the space vehicle

since M A << 5'10),
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•_z" %- ,0_S ,0_i
rs , 0-*S = -GMi 3

i=_ ris

i =_ ,1, 2 .... n (49)

is multiplied by M A and subtracted from Eq (48)

to yield Eq (50), the equations of relative motion,

n rs A

IVIA r_ A _ -G _ I_'I_ M A

_SA

• f's Mfl i:_[ \r$ A r iS/

+ ,1,2.... n
(5o)

where

r,A rS,O_A- r,,O-.. S

=
ri S , O-_S , O_i

Actually any other body, such as the moon, could
have been chosen as a reference with an appropriate

change of symbols in Eq (50). The geometry is
illustrated in the following sketch:

/ \- //

j 1, -_p 61

/ / 7 (s_ace vehi©il)

_®lO...z _

0 (lllu.ycenter)

#%

The unit vectors _@ , YS ' Az$ define the geo-

centric equatorial coordinate system in which

the equations of motion, Eq (50), are given. The
^

unit vector, x S, is in the direction of the mean

vernal equinox, and the x S y$ plane forms the

mean equatorial plane of the earth. All vectors

defined in the preceding sketch are assumed to
be resolved into components in this coordinate

system.

n

Tire vectors _ L, representing the forces

i=S

M A due to aspherieity of the i celestialacting on

bodies, i =$ , _,1,2 .... n can be written:

<51)
Any asphericity of the sun and planets fi' i = 1,

2 .... n, is insignificant in its effect on lunar

trajectories since even the effect of the central
force is small, as can be seen in the preceding

table.

Consider _ first. It arises from the expan-

sion terms of the earth's gravitational potential

in terms of spherical harmonics. In theory a

large number of harmonic terms should be in-

cluded; however, the coefficient of the oblate-
ness term (second zonal harmonic) is larger by

three orders of magnitude than the others (i. e.,

of order 10 -3 as compared to the order 10 -6 for

the others). Thus all but the oblateness term

can be neglected in lunar trajectory studies. The

effect of local gravitational anomalies of the earth

on the lunar trajectory is very small and will also

be neglected.

If U S represents tire earth's gravitational po-

tential, then the expansion of U_ in terms of

zonal spherical harmonics (tesseral and seetoral

harmonics have not yet been determined welI enough

for their inclusion) can be written

- - Jn Pn (sin do
US rs A n=l

(52)

is the distance of the vehicle from the
where r$ a

earth, Jn' n = 1,2 .... are empirical constants

(determined from geodetic and satellite measure-

ments) and given in Chapter II, R e is the mean

equatorial radius of the earth (R e = 6,378, 163 m),

do' is the geocentric latitude, and Pn (sin do') is the

associated Legendre polynomial of sin do'. The

above form of U® has been adopted by the Inter-

national Commission on Celestial Mechanics (Ref.

9). Let US = U 0 + U 2+ U 3, where, by compari-

son with Eq (51)

GM$

U0 = rs A

Ghl_ (Re _ 2
U2 = J2 3 sin 2 do' - 1

rt_ A \r S AI -- 2
(53)

GI¥I_ _ (Re _ n= - Jn Pn (sin q_')
U3 rs A =.n_
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U0representsthesphericallysymmetric
earth,whichhasalreadybeenacountedfor by

r_ A

the term -G --3---- M_ in Eq (50). UI, the term

r_A

corresponding to n = 1 in Eq (52), vanishes if the

center of gravity of the earth coincides with the

origin of coordinates (Ref. 10, p 43).

U 2 is the oblateness term (or second zonal

harmonic) which is the largest term in the ex-

pansion, while U 3 represents the higher order

zonal harmonics of the earth which may be neg-

lected for lunar trajectory studies as mentioned
above. The numerical value for

J2 = 1082.28 x 10 -6 .

and f be the x@, y@ z@ com-
Let f_x, f_y @z

ponents of f-@ as defined by Eq (50), respectively.

Then these components are given by

OU 2 _U 2 0U 2

f_x- ax ' fsy : Oy ' foz = Oz (54)

Next we turn to_ . To obtain_ , it is con-

venient to find an expression for the lunar" gravi-

tation potential Uff and define the gravitational

force as the gradient of the potential. U_ is de-

fined by

,¢dM¢u_ = G s (:_5)

where dM¢ is an element of mass of the moon,

s is the distance from dM_ to the space vehicle,

and _ indicates integration over the total mass of

the moon. The function 1 can be expanded in
S

terms of Legendre polynomials,

u_ =U¢o+U_l+u¢2+... (56)

where Alexandrov (Ref. ii) and Baker, Makemson

(fief. 12) have given the following values for U{0,

Uq 2 and U lr 3' after a slight change in notation*.

GM¢

U q0 - rSA

U¢I = 0

_ GMq a 2

U¢ 2 - 2r3A

I -I
C a

+--
1

C

(57)

The term a is the semiaxis of inertia of the moon,

in the direction of the earth, rSA is the distance

from the center of the moon to the vehicle, U{ 0

is the central force term arising from the spheri-

cally symmetric moon, U #1 shows that the mo-

ment about the center of mass vanishes by sym-

metry, and U q2 comes about since the moon is

a triaxial ellipsoid (i. e., an ellipsoid with dif-

ferent semimajor axes in three mutually ortho-

gonal directions from the center). Ia, I b and I e

are the moments of inertia about the three princi-

pal semiaxes of inertia, a, b and c of the moon, such

that c is along the lunar polar axis, a is in the
earth's direction (excluding small librations) and

b completes the right-hand system in the lunar

equatorial plane.

The selenographic coordinate axes x S, YS' Zs

coincide with the principal axes of inertia a, b, c.

The angles d_ and [_q are then defined to be the

angle between the radius vector to the vehicle and

the lunar equatorial plane (or the selenographic

latitude), and the angle between the Ys-axis and

the radius vector, respectively. These relation-

ships are illustrated in the following sketch:

 Luoar
/polar Z" '

The expressions for U_2 given by Pines and

Wolf (Ref. 13) agree with this expression if their

symbol y VM is replaced by R M (which eorres-

3
ponds to r SA in the notation of the present chap-

ter).

*Actually, Baker' and Makemson (Ref. 11) define

a unit vector A
rSA in the direction of the vehicle

radius vector rSA with components XSD, YSD'

ZSA along the selenographic axes. Clearly,

YS5 = cos _¢ , ZSA - cos (90 - _¢ ) =
rsh rSA

sin _)q .
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Theformof U( 2 in Eq(57)is givenin the
selenographiccoordinatesystemwhichrotates
withthemoon(seeprecedingsketch).From
thispointonemayproceedin twodifferentways.
Thefirst wouldbetotransformU(I2tothegeo-
centricequatorialcoordinatesusedin theequa-
tionsof motion,Eq(50). Sincetheinfluenceof
U{ 2onthetrajectoryis strongestnearthemoon,
it is morepracticalto writetheequationsof mo-
tion ina selenocentricequatorialor, preferably,
lunarequatorialsystemandconsequentlytrans-
form U_2to thatcoordinatesystem. If thesec-
ondapproachis taken,andthenewperturbative
expressionis denotedbyU'_2,thenthecompo-
nentsof theperturbativeaccelerationf_ in the
lunarequatorialsystemaregivenformallyby

au' ¢2 au'( o
f( f = 2 U' _2

(58)

Expressions for _q and U'_2 will be given in

Chapters VII and II.

At this time the knowledge of the lunar shape

and the density distribution inside of the moon is

slight and terms beyond U _2 in the expansion of

U_ given by Eq (56) are too uncertain for their

inclusion. In the expressions for U_ , Eqs (56

and (57), the numerical values of a, b, c, I a, I b,

I given in Chapter II, are based on observations
c

of the moon and the assumption that the lunar den-

sity is constant over concentric ellipsoidal shells.
More accurate numerical values and expressions

for UI_ together with local lunar gravity anomalies

will become available as soon as a long-term lunar

satellite can be observed from the lunar surface

and when gravity measurements can be made on
the moon.

b. Brief discussion of integration methods

and techniques

Expressions for all gravitational terms in the

equation of motion of the space vehicle, Eq (50),

have been given previously. Before turning to

the nongravitational force term __nA M_in Eq (50),

it is helpful to discuss the method of solution of

this vector differential equation which corres-

ponds to three second-order scalar differential

equations, or an equivalent system of six first-

order differential equations.

The problem is to find the position of the space

vehicle as a function of time subject to its posi-

tion and velocity at some initial time t = t O, or

its motion or trajectory. Mathematically speak-

ing, this is an initial value problem in ordinary

differential equations with time t as the inde-

pendent variable and the coordinates x_ , y$ , z

as the dependent variables. In order to proceed

with the solution, the positions of the moon, sun

and planets must be known in geocentric equatorial
coordinates. These positions can be obtained from

the yearly American Ephemeris (Ref. 14). If earth

oblateness and the triaxiality of the moon are in-

cluded in the physical model, then numerical val-
ues for certain other constants of the shape and

density distribution of these celestial bodies are

required as described in the previous subsection.

For lunar trajectories, the differential equa-

tion, Eq (50), is solved numerically on a digital

computer. There are several methods of integra-

tion available (Cowell's method, Encke's method,

for example), each with its own advantages and

disadvantages for a specific physical problem.

In addition one can use various numerical integra-

tion techniques (Runge-Kutta technique, for exam-

ple), in which the integrand is represented by a

polynomial of finite order at each computation

step. Two types of errors arise from the inte-

gration technique, one due to the finite number of

terms in the series, called the truncation error,

and an error due to the finite number of digits

carried on the computer, called the round-off

error. In general it can be stated that the fewer

the total number of computation steps in a given

physical problem, the less the error. The term

special perturbations is given to the determination

of a trajectory by numerical integration; a more
complete discussion of special perturbations can

be found in Chapter IV of Ref. 3.

The numerical integration of space vehicle

trajectories and the orbits of celestial bodies is

based upon one of three methods, and variations

thereof. The most direct in concept is Cowell's

method. In this method the rectangular compo-

nents of acceleration in the equations of motion

are integrated directly, yielding the rectangular

components of velocity and position. One disad-

vantage of the method is that the acceleration

term in the integration changes rapidly with time,

thereby necessitating the use of small computatior

steps (or time intervals). A second method, and
the one most often used in ballistic trajectory

computations, is Encke Ts method. Itere, instead
of obtaining the actual position and velocity coordi

nates, the difference between the actual position

and velocity coordinates and that of a Keplerian

orbit are computed. Some time, designated the

epoch of osculation, is utilized to define the ref-

erence curve. This implies that for times near

the epoch of osculation, the effccts of the pertur-
bations are small and can thus be summed over

relatively large time intervals. A disadvantage
lies in the fact that a new epoch of osculation
must be introduced when the effects of the per-

turbations become large. This procedure is

known as rectifying the Keplerian reference orbit.
Another method is the Variation of Parameters

which is discussed by Brouwer and Clemence (Ref.

15). There have been some recent studies (Baker

et al., Ref. 16, Pines et al., Ref. 17, for exam-

ple) of the advantages of the various integration
methods in terms of simplicity, area of applica-

bility and computing time, as well as accuracy
and interpretation.

For long-term ephemerides, such as long-
term artificial satellites of the earth and moon

and periodic circumlunar and allunar trajectories,
numerical methods are not well suited since a
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very largenumberof computationstepsarere-
quiredandhencetheaccumulatederror becomes
excessive.In thesecasesonemustresort to
generalperturbations,whichis theanalytical
integrationof seriesexpansionsof theperturbing
forces,or a combinationof specialandgeneral
perturbations.Examplesof generalperturbations
are thevariouslunartheoriesdiscussedin Chap-
ter III. A discussionof generalperturbations
canbefoundin Chapter1Vof Ref. 3.

For short transit trajectories as envisioned

for approach, impact, lunar landing, the accu-

racy afforded by general perturbation theory is

offset by its following inadequacies: (I) the

theories have not yet included a complete anal-

ysis of all perturbing accelerations such as solar

radiation pressure, and (2) the theories are very

complicated to program (although short in ma-

chine time) and almost impossible to check. For

these reasons general perturbation theories will

not be discussed any further in this chapter.

In order to compare the various special per-
turbation methods, the following table taken pri-

marily from page F-2 of Ref. 18 is useful:

Method Advantages Disadvantages

Cowell's Simplicity in

pro gramming

and analysis

Universally ap-

plicable

Coordinate con-

version un-

necessary

Increased number

of integration

steps
Excessive error

accun_ulation

Increased com-

putin_ time
Detection of

small pertur-
bations di[ficult

Encke's Smaller number

of integration

steps than
Cowell' s method

Reduced com-

puting time as
compared with
Cowell' s method

hnproved accu-

racy
Detection of

small perturba-
tions

Increased co ill-

puting time for

each step

Complex program

Special program

for near- para-
bolic orbits

Variation of Smaller number

Parameters of integration

steps than
Cowell's

Reduced com-

puting time

relative to

Cowell's

hnproved accu-

racy as com-
pared with

Cowell' s (about
same as Encke's)

Detection of small

perturbations

Most complex to

program

Most computing
time

Most useful for

earth- satellites

of moderate

eccentricity

Another consideration in numerical calcula-

tions is the integration technique to be used. The

choice is between use of a single computation step

technique such as the Runge-Kutta, a fourth-order

multistep predictor'-corrector technique such as

Milne's and Adams-Moulton's or a higher order

multistep technique such as Adams' Backward

Difference, Obrechkoff, and Gauss-Jackson.

There exist also special techniques for second-

order differential equations such as the special

Runge-Kutta and Milne-Storrner. For each multi-

step technique special formulas (for example, a

Runge-Kutta technique or a Taylor series expan-

sion) must be devised for starting the scheme at

the given initial conditions. The most important

factors in the choice of an integration technique

for space vehicle trajectories are high speed and

good accuracy. The latter involves low trunca-

tion or round-off error, ease of changing step size

and little error growth. The round-off error

can be reduced by using a double precision proc-

ess, i.e., by carrying all dependent variables in

double precision. The advantages and disadvan-

tages of the various schemes are discussed more

fully in Chapter IV of Ref. 3 (see also Refs. 15

and 18).

For ballistic lunar trajectories Encke's inte-

gration method or a variation thereof seems to

be best suited due to the smallness of the per-

turbations throughout the trajectory (this can be

seen by the way successive two-body problems

can be used to describe the trajectory relatively

accurately). The epoch of osculation should be

changed whenever the sphere or volume of influ-
ence of the moon is entered or left. For an ac-

curate simulation of large thrusts during the

flight, Cowell's method is preferable during

rocket burning. Of the various integration tech-

niques Ref. 18 seems to favor slightly the Gauss-

Jackson scheme over the others, while the

Obrechkoff scheme ires been found useful in the

reduction of computing time. The interplanetary

(and lunar) trajectory program described in Ref.

13 uses a modified Encke's method with an Adams'

sixth-order backward difference integration tech-

nique which is initiated by a Runge-Kutta scheme.

Encke's method. Due to its widespread use in

ballistic lunar trajectories, Encke's method will
be described in this subsection. This method is

used with some modifications in the trajectory

program described in Ref. 13. This trajectory

program, in turn, has been used with some minor

modifications for the calculation of n-body lunar

trajectories in this manual.

For the discussion of the basic Encke's method

without modifications, consider Eq (50) repeated
here:

.. rsA
M A rq) A = -G T- M@M A

r$ A

+}-(9 MA

+ fi M

[VIi M A

+ nAM A, i :{,1,2 .... n
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Dividingthis equationbyMA and taking the dot
A

product with xo, _O ' _O' respectively, yields

the x O YO z O components of vehicle acceleration.

The x O -component of vehicle acceleration be-

comes

• . XOA

xo/,, = -G _ 1VIO + fox
ro A

+_ _-G)('x-_ -_ _ Mi+fix 1 +mA x
_Jq \roA rio/

i : ff , 1, 2 .... n (59)

with similar expressions for Y'O A and z'o A"

Here fix represents the x O -component, in

x YO zo coordinates, of the aspherical gravi-

tational terms of the ith body affecting vehicle

motion, and nAx is the x-component of the re-

sultant of all nongravitational accelerations act-

ing on the vehicle in x O YO zo coordinates.

For brevity neglect all but the spherical gravi-
tational terms, i.e., n-body motion, since the

other may be superimposed at the end. Then Eqs

(59) become:

n

xo : % +_ Mi,
r • A i_-=Jq rOA io

i = _ , 1, 2 .... n (60)

with similar expressions for Y'O& and Z'OA.

Consider the path that the vehicle would follow

if acted on only by the gravitational attraction of

the earth. Let the vehicle radius vector, its com-

ponents of position and acceleration in this unper-

turbed restricted two-body motion be r Ou, Xou'
.. .. ,,

YOu" Zou' and Xou, YOu' Zou' respectively.

The unperturbed vehicle equations of motion for
this case are:

OXou

_:" Ou r'_ IVIo (61)

Ou

°° .°

and similar expressions for YOu and Zou.

Subtract Eqs (61) from Eqs (60), and define

new coordinates gOA' T)O/',' _OA by the rela-

tions XOA - Xou = _O/x' YO& - YOu = r_o/','

ZoA - Zou = _OA"

Then

"" : ( xOA Xou "_

Ou

n

+_ (-G)(_ --_ - _-_ M i.

i=_ \rOA rio/

i =q ,1,2 .... n (62)

°,

and similar expressions hold for r_ OA and _'O/',"

Consider the first term in Eq (62). Taking

only the term in parentheses and multiplying by
(-1), it can be written

rou rOA/ rou

3

Ou - _y_ x O

roA

3

1 tx rou _= - _3_ OA - _O,,X - 3 xo

rou rOA

= - _-- - xo/x - _0

rou r OA

(63)

Now, expressing roA in terms of x_0, Y00, zo0,

_0A' n0A' g0A

2 2 2 +z 2rOA = x OA + y A OA

Then

= (Xou+ _OA) 2 + (you + 0OA) 2 + (Zou+ gOA) 2

2 + 2x _ + + 2z
= r OU Ou OA 2You r_OA Ou _OA

+ _2A+ r_2A+ _'2_A (64)

(Xou+ 1/2 _OA)_OA + (You

2 + i/2 rlOA)r_OA + (Zou + i/2 t2OA)_jOArOA

--2 _=I+2 2

rourou
(65)

Put

(Xou+ 1/2 _$A)_OA + (you + 1/2 NOA)rTOA

+ (ZOu + 1/2 _OA)_OA

q= 2

Then

and

r
Ou

2

roA_ =l+2q

r O u j

3

rO-u'} = (1+ 2q) -3/2

rOA/

(66)
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Assume that the true orbit, Eq (60), does not

differ much from the Keplerian orbit, Eq (61),

so that _OA,_OA, _A' are very small in com-

parison to Xou, You, Zou. In that case the

squares of the increments can be neglected.

Thus,

q _ Xou _OA + YOu rio& + Zou _'OA
2 (67)

r
Ou

Further, assume q is small compared to unity,

thus enabling the first few terms of tile binomial

expansion to approximate tile term r-h - (r®u--_3/-_

L \rOA/ _J

in Eq (63).

Then,

If- 5
RrOA/

-3/2

(68)

Thc series used in the expansion of Eq (68) can be

shownto converge for - ½< q< ½ which is well

outside its practical limit of applicability in the

n-body trajectory program.

Define

f 1 - (1 + 2q) -3/2= (69)
q

Note that f changes much less rapidly than q,

staying very close to 3 when q is small. It is

thus easy to interpolate giving q as a function
of f.

Equation (63) then becomes by use of Eqs (64),
(67) and (69):

Xou x_)A i

rou rOA rou

fqxoA - _OA) (70)

Substitution of Eq (70) into Eq (62) and addition of

the terms that have been neglected yields tb_, fol-

lowing perturbation equations of motion:

GM O

_'$A = - rT (fqXOA - {OA )

Ou

n _ (_-'_+ fox +i_ q -G)• : \roA

+ fixl+ nAx

n OA = - _ qYOA
r

Ou

M.
1

+f
OY

+ fiyl+ nAy

Ou

n

+fo + E-G) (L k - Mi
i={ \rok rio/

+ fi; + nA z

(71)

These arc the fundamental equations of Encke's

method. Sometimes they witlbe encountered hav-

ing been multiplied by tile constant factor, h 2,

where h represents the width of the interpolation

interval. An actual numerical example using this

method is given by Brouwer (Ref. 15, p 179).

The reference orbit used in this description

of Encke's method is the restricted two-body

orbit, Eq (61). The method may be modified to

use other' types of reference orbits which would

be more advantageous for' the particular geometry
and force model.

d. Description of the n-body trajectory pro-

gram

The trajectory program used for obtaining n-

body integrated lunar trajectories in this manual
is described in detail in Ref. 13. Some additions

have been made, so that the program at present

is able to give the motion of a point mass with

mass M,X (simulating the space vehicle) under the
gravitational attraction of the oblate earth, the

triaxially ellipsoidal moon, the sun, Venus, Mars
and Jupiter. The positions of these celestial
bodies as obtained from the U. S. Naval Observa-

tory are stored in tim program in geocentric equa-

torial rectangular coordinates (x O , YO ' z_ ) for

12-hr intervals for the moon and for 24-hr inter-

vals for the sun and planets. A special input

variable allows the use of this position data for

the specified time period. In addition a subrou-

tine for computing lunar librations from the

rectangular tx)sition coordinates of the moon

exists, and is described in Section C of Chapter

III. It will be incorporated in the program as

soon as a satisfactory interpolation routine can

be established.

The force model for this trajectory has also

provisions for including drag due to a spherically

symmetric atmosphere rotating with tile earth.
The atmospheric drag terms in the equations of
motion are described in the next subsection.

There aI'e plans to include solar radiation pres-

sure and other nongravitational forces.

The n-body trajectory program uses a modified

Encke numerical integration method as described
in Subsection 3d. The unperturbed restricted

two-body orbit is rectified as soon as the ratios

of the pcrturbative distance, -speed, or numerical
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value of acceleration exceeds i% of the respective

restricted two-body reference orbit. Tile proce-

dure is essentially as follows:

(1) The most significant body in the system

is selected (initially this is the earth,

and if the trajectory approaches the

moon, the moon); Eqs (61) are solved

numerically on the computer. This

numerical solution can always be checked

by the known analytical solution.

(2) Equations (60) are then solved using a
sixth-order Adams backward difference

technique which is started by a Runge-
Kutta scheme.

(3) The corrected coordinates of the body

are then obtained by using the relations:

x@& = X@u+ _@_, Y@zx = Y_u + n_/x,

z_& = Z_u+ _ and similar ones for
_A

velocity and acceleration components.
When the perturbations exceed the above

limits, new solutions are obtained for

Eq (61), and the orbit is rectified.

4. Nongravitational Forces

Having discussed all gravitational terms ap-

pearing in Eq (50), which are significant for lunar

trajectories, let us turn our attention to the non-

gravitational forces acting on the vehicle, the

resultant of which was termed nAi_}x in Eq (50).

It should be noted that ff the forces discussed sub-

sequently are to be used in Eq (50) and the tra-

jectory program, they must be expressed in com-
ponent form in equatorial geocentric coordinates.

Let

nAMA = _s + D+ D E + _)M + T + Rre 1 (72)

where

S

¥

Rrel =

= force due to the solar radiation pressure

= atmospheric drag force

= electromagnetic forces

= meteoritic drag force

= rocket thrust force

relativistic corrections to the equations
of motion,

These forces will be discussed more fully in the

above order in the following subsections.

a. Solar radiation pressure

Outside the confines of the earth's atmospher%

the most significant natural nongravitational force

acting on a vehicle arises from solar radiation pres-
sures can be seen from the table on page IV-2_..

It is due to the absorption and emission of photons

by the space vehicle and is a consequence of the

photon nature of light. Studies have been made

previous to the launching of space vehicles con-

eerning the effects of this solar radiation pressure
on the orbits of micrometeorites around the sun.

These studies by Poynting and Robertson indicated
that the orbits of micrometeorites became more cir-

cular due to solar radiation, while simultaneously,

slowly spiraling into the sun. More recently in-

vestigators have studied the effects of this force
on satellites and, have found that for a vehicle

M __

mass to area ratio)\-_- < t). 0t _m/cm2" , a sizable

perturbation occurs in the orbital elements (see
Ref. 12). The essential qualitative effect of

radiation pressure is a displacement of the center

of the orbit, which is especially evident for cir-
cular and near-circular orbits (Ref. 19).

In these studies one of two possible approaches

is taken. Either this force is obtained neglecting

those times when the space vehicle is eclipsed

by the earth or moon and hence the radiation pres-
sure does not act (this is termed tbe shadow time),

or the shadow time is included by expressing the
force as a function of the orbital elements of the

vehicle (i.e., as a perturbation in the variation

of parameters method).

For the present analysis, the shadow time will

be neglected and the rectangular components of

the radiation pressure will be given in terms of

vehicle-centered coordinates. This analysis

essentially follows Kochi and Staley (Ref. 20).

Let P be the magnitude of the momentum of a

photon, Ep its energy, m its equivalent mass,

and c the speed of light; then

P = mc (73)

and

Ep = hvp = mc 2 (74)

where h = 6. 625 x 10 -39 joule-see is Planck's

constant and v is the frequency of the radiation.
From Eqs (73) and (74)

hvp
P - (75)

C

The magnitude of the force per unit area due

to radiation pressure, Ps' then is

hv
= ----P N (76)

Ps e

where N is the number of photon collisions with

the vehicle per unit time on a unit area. If WA

is the radiated power arriving at the space vehicle

W A W A

per unit area of the vehicle, then N = _p = h Vp

and

h Vp W A W A

PS = e "_= c

The type of photon collision with the vehicle
must also be taken into consideration. To do this,

a factor qs will be introduced such that 0 <qs < 1

where qs = 0 represents total momentum transfer,
or perfect absorber, black body, i.e., an inelastic

photon collision, and qs = 1 represents a perfect
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reflector, i.e., an elastic photon collision.

Hence

WA

PS = _ (i + qs ) (77)

Let W O represent the total radiated power (in

watts/era 2 per hemisphere) of the sun at all

frequencies. Then by the Stefen-Boltzmann Law:

W6) = _ cr T 4 A6) (78)

where _ is the total empirically determined

emissivity of the sun (_ = 1.0, i.e., the sun is a

perfect radiator)jc_ = 5.67 x I0 -8 watts/m 2 (°K) 4

is the Stefan-Boltzmann constant_ a constant

of'proportionality determined experimentally

and defined by Eq (78)j

T is the absolute temperature in °K,

A(D is the surface area of the sun.

Now the radiant energy per second, W A,

impinging upon a unit area of the vehicle perpen-

dicular to the line-of-sight to the sun, which is

regarded as a point source, at a distance r@ ,6)
is given by

W6) _ o T 4 A O
- (79)WA= 2 2

_r • ,6) ,_ 7rrt_,6 ) _A

The point source approximation is reasonable

since any trajectory in the vicinity of the earth
is more than 100 solar diameters from the sun.

Hence the solar radiation pressure per unit area

is given by

T 4
_o A 0

Ps = 2 (1 + qs ) x 107 _ (80)

7r er@, O _A cm

where Ps is in the opposite direction from the sun

along the vehicle-sun line, and 107 is a conversion

factor from watts to dyne-era An approximate
sec

value for the solar radiation pressure at the

distance of the earth is Ps = 4 5 x 10 -5 dynes• 2 for a
em

blaekbody space vehicle (Fief. 21).

The acceleration of the vehicle due to the solar

radiation pressure, _s, iS given by

- %Ds Ps0 (1 + q) A s ,6) _A

MA MA r2,6) --A r_ ,0 ---A

where

_T 4 A6) x 107 022
PsO = 7rc -'Y 1 dynes

(81)

is the total force due to solar radiation divided

by % qs' 0__< qs--< 1, is the space vehicle

reflectivity, zero for a black body and 1 for a

perfect reflector, A the area of the vehicle per-
s

pendicular to th_ vehicle-sun line, M A its mass,

and ,_r-_ ,6) __.& is tile radius vector of the vehicle

from the sun. Next write ,O ---A : rOA - ro0

so that Eq (81) becomes

_ Ps0 (1 + qs ) A s _ --

_ XL_Ir*z_ %0 13 (r*zx %0
) (82)

Since the position of the vehicle is continually

computed during a trajectory run on the computer

and since the positions of the sun are stored,
Eq (82) may be solved as soon as A is specified.

S

For all but spherical space vehicles the computa-

tion of A requires a knowledge of vehicle orienta-
s

tion with respect to the vehicle-sun line. This

line can be given with respect to body axes

Xb' Yb' Zb with origin at the vehicle center of

gravity, and these axes can be transformed to

the geocentric equatorial coordinates by the

transformation given in Table 2. The folIowing

sketch illustrates the geometry in this case.

Equation(82) shows that--_s depends very
MA A

S

strongly on the area-to-mass ratio _AA" It is

quite negligible for the moon and planets, small
for dense space vehicles, and becomes sizable

for light and unorthodox vehicles such as balloons.

D
S

The term _7-A-m also depends on the type of surface--

thus qs may approach 0.98 for highly polished

metals. The shadow time may be neglected for

lunar trajectory studies since the trajectory will
be in sunlight during most approach, impact, and

circumlunar trajectories. However, during earth

or moon orbital phase the shadow time may approach
half of the total time in orbit for low-altitude orbits.

A discussion and graphical presentation of shadow

time as a function of orbital elements is given in

Chapter XII1 of Ref. 3.

b. Atmospheric drag and lift

In connection with lunar trajectories, the con-

tribution of atmospheric drag need only be con-
sidered in the short time period when the vehicle

is in the immediate vicinity of the earth. Thus,

its significance is much less important than in

the case of earth satellite vehicles. However,

during parking orbits around the earth, atmospheric

drag becomes of decisive importance in the selec-

tion of orbital radius and eccentricity; a discussion
of this force wit1 be included here,

The acceleration of a space vehicle due to the

drag force can be expressed as

1 aa
M--2 : - _c D _0 Va2 V_ (8_)
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Space xbvehicle

2
Yb

where

C D is the drag coefficient (usually the one for

free molecular flow in the case of earth satellites

and space vehicles)

A is the area of the space vehicle perpendicular
a_

to V
a

Pa is the density of the atmosphere

is the velocity of the vehicle relative to the
a

atmosphere.

For parametric studies it is useful to introduce
C A

D a

a ballistic coefficient B = _ which gives for

the drag acceleration

v a
_[Z : -BpV a (84)

The drag coefficient C D can be calculated from

free molecular flow assumption in the kinetic

theory of gases. It depends on the geometry and
orientation of the vehicle as well as the interaction
of the air molecules with its surface. The value

of C D is 2. 0 for spherical vehicles, and slightly

larger for other vehicle shapes. For all but

spherical vehicles A a as well as C D will vary_,

with the orientation of the vehicle relative to V .
a

In tile case of a vehicle in a random tumble with

a short period of tumble compared to the orbital

period or compared to the time in the atmosphere

for lunar trajectories, a good approximation is

A A

Aa =--4- ' where A/, is the surface area of the

vehicle.

V can be written as tile difference of the
a

vehicle velocity with respect to the geocentric

equatorial system frame VO _5 and the velocity

of the atmosphere _O a' Thus,

At altitudes below 500 kin, the atmosphere can

be assumed to rotate with the earth so that under

this assumption the velocity of the aimosphere

with respect to the equatorial sysiem is given by

V(1)a = _'0 x rOA (86)

Substituting (86) into (85)

Va : _eA - 5e x Fe_ (sv)

In order to express V a

coordinates, note that

in rectangular geocentric

-* . A >Ai_ + _O (88)VOA : xOAxo + YO_ zoA

AAAtO _b zo A

_O x rOA = 0 _oO = _aO xOAY O

xOAyoA zoA - _O y@A x@

If Eqs (88) are substituted into Eq (87) and the

result into Eq (34), the magnitude of the drag

acceleration is given by:

D (_2M---A = -g p OA - 2_°O xoA YOA + 2_0 xo_ _'OA

+ _) x_A ) (89)
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The number of molecules per unit volume. NO, ('.an

be oblained from the kinetic theory of _ases. In

the case of an isothermal atmosphere (T : constant)

and constant molecular weight and composition

N O N 1 exp I: -_'P'- (he - helj (90)

where

m : the constant mass of each molecule

h : altitude above earth
e

g_ : the constant value of" the gravitations]
acceleration

10 -23k = 1. 380 x jou,es/°K, Boltzmann's
constant

T : absolute temperature in '_K

h = altitude,

Subscript I designates some reference condi-

tion. The atmospheric density is then given b 3

P = N0m- However, this is a very poor' approxima-
tion of the atmosphere, and usually a variation of

temperature T, g@, as well as molecular weight

is assumed with altitude and the density, pressure,

and any other quantities are computed from this

assumption. The latest such "standard atmosphere"

is the 1961 U.S. Standard Atmosphere, which is

used in all work in this manual. The density in
this atmosphere varies with altitude and is given

to an altitude of 700 kin. Actually the density

varies additionally with latitude due to the latitude-

dependence of the earttFs gravilational potential

U_ by, about _2% and with the solar activity (which
at the higher altiludes may cause very large devia-

tions from the standard density). These variations

from the standard atmospheric density may be

neglected, however, as long as only hmar trajec-
tories or a few orbits near the earth are considered.

Jusl as in the case of solar radiation pressure

lhe drag acceleration is small for small area-to-
lllass ralio or dense vehicles and becomes more

significant for light vehicles such as balloons.

The drag force decreases very substanlially with

altitude and may be neglected for all but long-
time operations above 700 km.

For accurate drag computations and when lhe

vehicle orientation is significant il is tnot'e con-

venient to express the drag force D i_ c()lnponeltl

form along the body axes x b, Yb' Zb'

1 2
1) x : -_ C x Are f P V a

= -½Cy P 2l)y Aref a

1
D z : -_ C z Are f p Va2

(91)

where all the variations in the force are absorbed

in the coefficients C , C , C and A is a con-
x ) z ref

slant reference area characterizing _hc spacc
vehicle. Once the orientation ol the vehicle is

known, the transformation from body axes [o

geocentri( equalorial coordinates as given in
Table 2 can be performed.

Atmospheric lift will be neglected for" parking

orbits and lunar lrajectories since it is several

orders of magnitude less than the drag at orbital

attitudes, I{owever, during the intermediate stages

of ascent to orbil or injection, and in the initial

stages of a nonballistic re-entry, tiffs force be-

comes important. The magnitude of the lift I,

is defined, analogously to the magnitude of the
drag D, by tile equation

2L : C L A a 0 V a (92)

where C L is the lift coefficient which can be

computed similarly to C D from free molecular

assumption in the kinetic theory of gases. Tile

lift force f_is irt a plan_ perpendicular to < by

definition, and its dir'eclion in lhis plane is

specified by the bank angle g. Consider a unit

planeperpendicularvector in this to rod _ and V a,

r(B A V
namely f = x aV--" A unit vector orthogonal

"w .r@, 5 a

a a

. _ x ---- x \_---to Yw is given by _w _ ro A a

__ a *, define wind
The unit vectors _w V_- ' Ywand _w

a

axes, where a rotation about the x -axis is defined
w

as the bank angle _. a rotation about the Yw-axis is

tile angle of attack (_, and a rotation about the

Zw-aXis is the yaw angle l]. Wind axes and the

bank angle _ between az and _ are illustrated in
W

the following sketch:

Perpendicular

_Plane

l he drag at.( ,:1_ rat ion _ as given b>, Eq (_3)

is in the negative _ -direction.
W
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e. Electromagnetic forces

In most trajectory calculations the vehicle on

a lunar trajectory is assumed to be electrically

neutral, and beyond some altitude (700 km),

which is regarded as the upper limit of the atmos-

phere, it is assumed to move in a vacuum. This
ideal condition does not exist in space, and the

effects of several electromagnetic phenomena
will influence the vehicle trajectory very slightly.

Even though these effects are small, upper limits
to the deceleration of space vehicles should be

determined and they should be considered in a

detailed trajectory analysis.

The medium through which the space vehicle

moves consists of charged particles. Baker

(Ref. 12) states that even interplanetary space
contains between 100 and 1000 charged particles

per cubic centimeter which originate from solar

eruptions (flares and solar winds), cosmic ray
ionization (the ionization of neutral particles

caused by cosmic rays and gamma radiation),

Higher concentrations of charged particles occur
near earth in the inner and outer Van Allen belts

which consist of solar particles trapped in the

earthts magnetic field. Recently a temporary

radiation belt was created by a high-altitude

hydrogen bomb explosion of July 9, 1962 which

is expected to last for several years.

A space station in a stationary plasma (an

electrically neutral medium containing charged

particles) will collide with both slow moving

positive ions and fast moving electrons and build up

a small excess of net negative change on its

surface.

Another factor affecting the potential of the

vehicle, 0A, stems from its motion with respect

to the plasma.

As the vehicle travels at several km/sec, its

collision rate with the positive ions, which move

more slowly, increases as compared to the

stationary plasma collision rate, whereas the
collision rate with the electrons, which move much

faster than the positive ions, remains essentially
unaltered. Thus, vehicle motion tends to decrease

the induced negative voltage from the source dis-

cussed above.

Beard and Johnson(Ref. 21) have derived an

expression for the potential, OA' of a satellite

moving through such a plasma with speed V . It
P

is:

ek'I" fn ( _ _Ip / (93)_/,, = _ q--

where

k = 1. 380 x 10 -23 joules/° K, Boltzmann's

constant

T : absolute temperature of the plasma in
o K

qc = 1.602 x 10 -19 coulomb, the charge of

an electron

V = speed of space vehicle relative to
P the plasma

Vef = the average thermal speed of an
electron in the medium, given by

Vef = O. 145 T/m e

where m is the atomic weight of an electron.
e

This negative potential obtained from Eq (93)
amounts to only a few volts in typical cases,

Singer and Walker (Ref. 22) have proposed that

the ejection of electrons caused by high-energy
solar radiation striking the vehicle need not be

considered due to the buildup of a screen of ejected

electrons surrounding the vehicle, thus reducing

any further electron ejection.

An expression for the total force on a space
vehicle which is electrically conductive and

magneticaily permeable has been given by M. Z.

V. Krzywoblocki, et al., in f%ef. 23. Starting

from Maxwell' s equation for moving media he
derived the force on a body due to the electrostatic

field, the magnetic field and a final expression

for the force acting on a moving body in an

electromagnetic field.

Due to our" scant knowledge of the cislunar
and interplanetary medium and the large and

unpredictable fluctuation of its number-density
with solar eruptions, the material given in this

subsection has been primarily of an illustrative

nature. The presence of these particles and the

radiation will influence the trajectory of the lunar

vehicle only slightly; their pressure, however,

is of primary importance from the standpoint of

shielding requirements for any human occupants

in the space vehicle.

d. Meteoritic drag

In the attempts to analyze the force acting upon

a space vehicle due to meteoritic drag, experimental
evidence is taken primarily fr_om past observation
of meteoritic contact with the earth (l_ef. 20) to

which some space probe data has been added

recently. Due to the rarity of large meteorites
impinging even upon a body the size of the earth,

it can be assumed that the probability of a small

lunar vehicle being hit by such a meteorite would

be extremely small; therefore, it will be neglected.

Ilence, it will be assurned that micvometeorites

contribute the only significant meteoritic drag

perturbation. Ideally one would like to know meteor

density, mass flux, velocity and spatial distribution

as a function of position and time for the sporadic

background as well as for meteoritic showers.

Only the sporadic background flux can be considered
here. Estimates of the accretion of meteoritic

material by the earth vary widely, but extensive

geophysical evidence from both optical and radio

experiments indicates that the maximum arnount
of meteoritic material hitting the earth per day

is 2000 tons (Refs. 20, 24). This would correspond

= l0 -21to a meteoritic density of 0M 5 x g_cm31

outside of the atmosphere. Furthermore, it is

believed that micrometcoritcs (i.e., meteorites
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withmagnitudesbetweentheranges20and30or
radii lessthanabout100microns)constitute95%
of themeteoriticmaterialhittingtheearth(Ref.
20). Also, meteoritescanentertheearth's
atmosphereonlywithvelocitiesbetween11and
72kin/seerelativeto theearth. Thelowerlimit
onvelocitiesof entryis dueto thegravitational
accelerationoftheparticlebytheearth,while
theupperlimit is thesumof theparabolicvelocity
for a solarorbit at thedistanceoftheearth
(42km/sec)andtheearth'sorbitalvelocity(30
km/see).

Assumethatthedirectionof motionof the
meteoritesis randomalongthelunartrajectory
(thishypothesisis invalidnearthesurfaceof the
earthor themoonwhichshieldthevehiclefrom
below)andthatthemeteoritesaresosmallas
to evenlydistributedin space.Thenthemass,MM
of meteoritesstrikingthevehiclein thetime
intervalAt from any one direction is:

1
MM = _- PM AM V_M At (94)

where

PM

A M

= is the average density of meteoritic

material in space

= the cross-sectional area of the ve-

hicle perpendicular to the particular
direction

VSM = the average speed of the rneteo_'ites

and it has been assumed that the velocity of the

micrometeorites is much larger than the velocity
of the vehicle. The net momentum imparted to

the vehicle sides per second is zero since the

momentum of the micrometeoritic hits from the

left is cancelled by those from the right, and
similarly for the top and bottom of the vehicle.

However, the micrometeorites striking the space
vehicle from behind have a relative velocity of

(V@M - V@A) with respect to the vehicle, and

those from the front have a relative velocity of

- (VsM + V@A). The net rate of momentum trans-

fer, or the magnitude of the force on the vehicle

due to meteoritic impact is

1

DM1 = - _PM AM V$M VOA (95)

where the negative sign indicates that this force

is directed against the vehicle geocentric velocity

vector VOA. As an illustrative example, for

PM = 5 x 10 -21 g/cm 3, A M = 10m 2 = 105 cm 2,

an average meteoritic speed of VOM = 40 km/sec

= 4 x 106 cm/sec and a representative vehicle

speed of 3 krn/sec = 3 x 105 cm/sec, the magnitude

of the force due to meteoritic impacts is DM1 =

-2 x 10 -4 dynes.

Also to be considered is the type of meteoritic

impact, In a perfectly elastic collision the

micrometeorite will leave the space vehicle with

the same relative speed as that at which it hit and

the magnitude of this total force on the space ve-
hicle becomes

-4
D M = 2DM1 = - 4 x 10 dynes.

In a perfectly inelastic collision, on the other

hand, all the micrometeorites stay with the ve-

hicle and must be accelerated to its speed. In

this case the magnitude of the total force on the

space vehicle becomes

DM = DM1 - PM AM V_M VIBA = 4DM1

= -8 x 10 -4 dynes.

In the case where the micrometeorite blasts

material from the skin of the space vehicle, and
where it, together with some satellite material,

is left behind, the meteoritic drag force should
probably be decreased.

This discussion shows that regardless of the
type of collision and even for the maximum

meteoritic density assumed for these caleulations

the force on the satelIite is extremely small. The
major importance of meteoritic impacts lies in

their effect on the material of the satellite skin,

i.e., the probability of puncture with resulting

fuel or gas losses, or damage to some subsystem,
and the sandblasting or pitting of the skin or of

optical surfaces such as lenses, windows, etc.

The probabilities of a catastrophic encounter

between a space vehicle and a large meteor are

extremely small. A more complete discussion of

meteoritic densities, representative values for

fluxes, classifications, models, and the effect of

rnicrometeorites on space vehicIe materials is

given in Chapter II and Chapter II of Ref. 3.

e. Rocket thrust

The thrust due to rocket burning is another
force acting on the space vehicle which must be

considered in the complete analysis of a lunar

trajectory. As a first approximation it is pos-
sible to assume that the vehicle is accelerated

by an initial large thrust during the boost stage

to the predetermined injection velocity, and that
the lunar trajectory approaches the moon bal-

listically on a path determined by the injection
conditions. In this case thrust forces need not be

considered. However, even the earliest lunar

vehicles had provisions for applying corrective
accelerations by both midcourse and terminal

thrust to overcome any errors in initial conditions

and due to our imperfect knowledge of the physicaI

environment. More sophisticated missions such

as lunar orbit and landing missions require one

or severa/ large decelerations and accelerations

of the space vehicle during the mission. Thus at

some time in the planning of any lunar mission the

simulation of thrust becomes necessary.

In most eases the thrust force is large and the
time for rocket burning is small compared to the

transit time. Then l_:ncke's integration method

should be stopped at the onset of rocket burning

(since the perturbing acceleration by the thrust
force is too large), and Cowell's method of in-

tegration shouId be used to simulate vehicle motion
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duringrocketburning. Theendconditions,i. e.,
the time when the thrust is terminated, can be

used to define a new rectified orbit and the

numerical calculations of the subsequent trajectory

can be continued by use of Enckefs integration

method. Since the trajectory after injection is

outside the denser parts of the atmosphere, low-

thrust propulsion by ion engines or other devices

is possible. The thrust perturbation will then

act during the major part of the lunar trajectory,
but it will be small enough so that Enckefs method

of integration may be used throughout for some
small thrust accelerations, without large errors

arising from rectificqation.

Let T be the thrust force acting on the space

vehicle. It enters_the equations of motion Eq (50)

through the term n A which is defined by Eq(72)

where the mass M A of the vehicle is its instanta-

neous mass, which decreases due to the exhaust

of mass in a stream of particles during rocket

burning. Thg magnitude, direction, and time-
variation of T must be specified. A natural co-

ordinate system in which the components of T

might be given is the body-axis system defined in

Chapter III since the rocket engine is mounted in

the body of the space vehicle. With the orientation

of the vehicle known, it is p_ssible to obtain the

x , YO ' z components of T by the transformation

of Table 2.

In some cases such as in lunar landing optimi-
zation studies the thrust force will be resolved

into components in and normal to the vehicle

trajectory plane. The transformation from these

thrust components to x O, y@ , zO components of

_4 is given below.

Define a coordinate system x v Yv Zv with

origin at the center of gravity of the vehicle, the
z -axis in the direction of the radius vector (or

v

up), the x -axis perpendicular to the z -axis in
V V

the general direction of vehicle motion in the

trajectory plane, and the Yv-aXis perpendicular

to the instantaneous trajectory plane to complete

the right-handed Cartesian coordinate system.

Denote the thrust components in the XvYvZ v

directions by T u, T v, T w respectively. The

problem, then, is to transform the T u, T v, T w

components to T x, Ty, Tz components in the

x(_, y_), z 0 directions, respectively (see the

following sketch):

Define thrust components T 6 and T in the

north and east directions, respectively. Then,

as can be seen from the preceding sketch, the

mtgle between T v and T 6 as well as T u and Tel

is (360°-Ae), where A e is the azimuth of the T v

direction measured from geographic north. A

rotation about T w by the angle A e will transform

from T u, T v, T w components to Tc_, T6, Tc0 com-

ponents. Further rotations about T by the angle

-(90-6) = 6-90 and then about T z by the angle

(270-a) will yield the folIowing transformation

equations:

os c_ sin c_ sin 6 - cos

0 cos 6 sin 6

cos A e sin A e _Fu_

o l<wj

(96)

In the above equation

YO A
sin c_ =

(97)

xo A
cos o/ =

2 \i/2
(x2, +y

z_)A
sin 6 -

roA

COS (5 =

ro A

(compare with the preceding sketch). It remains

to give cos A e and sin A e in terms of xoA YOA

zoA. We have
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cos 1VE
COS A =

e cos 6

2

cos iv _

112 (98)

where

_ A x z 0

cos x

xe_ Yon
=

- X_gA Y_gA

+ (zo A XOA -zoA x_gA) 2

+ (X.A _}OA -XoA Y_BZ_) 21 1/2

The expressions (98) become, by use of (99):

cos A e = 0A Y0A - X_)A Y_) r_

((X2_gA +y2$A /

2-n-_- 1 / 2

+ (x*n)*n -_n Y*_) J)(100)

sin A e = - @A 5}OA -kOA Y_

%}OA z_gA) 2 + (z_gA xoA

2

• )(-z$_x@z _ + XsA }e_-_eA

Equations (96), (97), (i00) and (i01) completely

define T x, Ty, T z in terms of Tu, Tv, T w and the

instantaneous position and velocity coordinates

x$A' YSA' zsA' xsA' YSA' 2OA' This latter

method of determining the components of the

thrust force is advantageous since the vehicle

orientation does not enter the computations explicitly

but rather implicitly as an input through the

specification of the time variation of T u, T v, T w-

When one starts with the components of thrust in

the body axis, the vehicle orientation must be

specified explicitly•

f. Relativistic effects

Before relativistic effects are mentioned, a

brief description of the various systems of
mechanics which deal with the motion of bodies on

the astronomical scale is required. The earliest
formulation of mechanics in mathematical form

is due to Newton. Two postulates underlie his

formulation of the laws of motion: (1) there

exists a universal absolute time _ in terms of which

all events can be described, (2) any particle can

be placed in an absolute euclidean three-dimen-

sional space. The metric, or distance ds between

any two neighboring points, of this space is given

by

ds 2 = dx 2 + dy 2 + dz 2 (102)

where x, y, z are the three cartesian coordinates

of this space, and time t is regarded as a parameter.

An inertial system in newtonian mechanics is de-
fined as a coordinate system in which Newton' s

laws of motion preserve their mathematical form

during a transformation of coordinates. Newton
avoided complications by not specifying this

absolute space and this absolute time (i. e., the

inertial system), They have to be specified for

each experiment that is performed.

Newtonian mechanics was very successful in

interpreting experimental data, and it was not
until two centuries later that this theory was

modified by Einstein. Einstein's special theory

of relativity is based on (1) the postulate of

relativity, which states that it is impossible to

detect unaecelerated motion through space and

(2) the velocity of light in vacuo is the same for

all observers, regardless of the relative velocity

of the light source with respect to the observer.

The most striking distinction between special

relativity and newtonian mechanics Ks the intro-

duction of a finite maximum velocity c in special

relativity while the maximum velocity in newtonian

mechanics does not have any limit. As a tribute
to the success of newtonian mechanics the absolute

euclidean three-dimensional space has been re-

tained by special relativity. However, the notion
of an absolute time which could be fixed in some

way by two observers at two different places has
been abandoned. Each event now needs four numbers

to specify it: three space coordinates and time,

and they can be plotted as points in the four-dimen-

sional space-time with metric.

(dx 2 + dy2 + dz 2) (103)
ds 2 = dt 2 _I

(Eq 103 is called the Minkowski space-time.)

Similar to its definition in newtonian me-

chanics, an inertial system in special relativity

is defined as a coordinate system in which the

laws of mathematical i)hysics retain their form

during a transformation of coordinates. The most

general transformation between two inertial sys-

tem S (x, y, z, t) and S' (x', y', z', t') in newtonian

mechanics is given by the Galileo transformation

t' = t, x' = x - Vt, y' = y, z' = z (104)

where V is the uniform speed with _hich S' moves

parallel to the x-axis with respect to S. In special

relativity the most general transformation between

IV -36



SandSt is givenbytheLorentztransformation

t' = _(t - -_x) , x' = _(x - Vt),
C

yl =y, z v = z, (105)

-1/22

whece _ = (1 - V_) , and c is the velocity of
C

light in vacuo, Both of these transformations
are invariants, i.e., we may exchange the primed

and unprimed coordinate systems without altering

the form o[ the equations.

The theory of general relativity attempts to ex-

tend the postulate of relativity to accelerated types

of motion (not only" to unaccelerated motion as in

special relativity) such as to motion in a gravita-
tional field, The euclidean geometry of the previous

systems of m _chanics has been abandoned, and all
events can be plotted as points in some four-di-

m<nsional riemannian (curved) space-time with

the m,,trie

4 4

ds2 = /__ gij (xi) dx.1 dx.,j (10(1)

i= 1 j-I

whcr'e x i are the coo_'dinates and gij (xi) are the

components of the fundamental metric tensor
characterizing the particular space-time used hr

ttle pr'oblem. The coordinates x i are not neces-

sat'ily known a priori but will be assigned in some

way later', the only restriction being that the

same method of assigning coordinates be used

throughout, The laws of physics are assumed to

be unaffected by the choice of coordinates and

{:an theref'ore be expressed in an invariant form.

This means that as a guide one uses the principle
of covariance: There must be no preferred co-

ordinate system. This principle of covarianee

can be insured by use of tensor's and tensor

equations which have the same form in all co-

ordinate systems.

The equations of mathematical physics in

special relativity and general relativity should
reduce to the corresponding equations in newtonian

mechanics ii' the finite maximum velocity c in the

relativistic equations is replaced by an infinite

one. Thus, in the problem of space vehicle motion,

special relativity may be regarded as a "corceetion"

to newtonian mechanics at high space vehicle
. u

speeds and general relativity as a "eorrectmn

to NewtonWs taw of gravitation.

Contributions to special relativistic rocket

kinematics and dynamics have been made by

many investigators and the fundamental equations
have been presented hy many authors, for example

by Krause in Hell 25, To illustrate special

relativistic effeets, lhe lollowing summary of

equations for the motion of" a _.ockct in a straighl

line and without any extem_al ['orces acting on it

has been taken fFon'l tlef. 25.

The folh_wing lable Mlc_xvs that special

t _lativistie effects on a space vehicle become

important whell its velocity or the velocity of the

exhaust _ases are an appreciable fraction of the

speed of light, c = 299792.5 km/sec. It shouht

be noted that by letting e _ _ , _ 1 the
ab_ve relativistic rocket equations reduce to the

nuwt.oniau rocket equations. For lunar vehicles

these relativistic corrections arc very smart and

can be neglect..'d in most l_ractieal cases.

Since the theories of special nor general

relativily do nol employ a universal absolute time
as newtonian mechanics does. the readings of

clocks moving relative to each other and/or be-

ing in a differenl gravitalional fieht will no! agree.

It is therefore possible to employ the different

gravitational environment and the relative velocity
between an earth ol)set'_eF and a space vehicle to

measure special and general relativisIie "lime
dilation" effects.

TIw problem of rocket motion has not yet been

attacked in the t w.ory of general relativity, tlow-
ew'r, equations or motion analogous to the n-body

and t'estri cl ed n -body i)roblem s of newtonian

mechanics have been obtained in general form by

Einstein, 1,'oek, and Papal_etrou amon_ others.

The general relativistic equations of me1 iotl are

so compliealed that no method of soltdiou has as

yet been given. By using a simplified dynamical

system of a massive body and a space \chicle

analogous to the classical restricted two-body

problem of newtonian mechanics, three _,eneral
relativistic effects have bee_ deduced:

(1) The advance of perih_,lion (closest

approach to the sun) of the plane.ts.

(2) The deflection of light by grav!tational
fields.

(3) The red-shift of spectral lines by the

gravitational fieht near its source.

Krause decived in Ref. 25, b 5 use of the above

simplifying assumption, the secular and long-
periodic perturbations in the osculating orbital
elements of a near-earth satellite.

The theory of general relativity gives the effect

of gravitational fields, and the stronger the field.

the more pronounced i's effect on the trajectory.

But, just as in the case of special relativity,

gen_,ral relativistic effects are very small for

lunar vehicles and call be neglected in practical
trajectory calculations. For example, the advance

of perigee of a near-earth satellite, as calculated

by LaPaz (Ref. 26) amounts only to several

hundreds of seconds of arc pe._' century.

5. Accuracy/ of Computed Trajectories

Before closing the discussion on force models

and trajectory calculations it is helpful to sum-
marize the _leviations of n c,mnputed frmn an

actual trajectory. The main sources _f erFor in

a computed trajectory are:
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Quantity

Rocket in Rectilinear Motion

Express ion in Coordinate

System S(t _ of Stationary

Earth Observer"

Expression in Body-

Fixed Coordinate System
S Centered in the

A

Moving Rocket

Velocity

Mass

Time element

V

__/I = = ;_ M A

v2 1/2

{it : i_ dt A

M A

(tl 5

Acceleration
1

f =

c I_2
--I_>,- (1 - _) f_"\----_ _]

f
A

Exhaust velocity

Element of mass

flow after ejection

Mass flow rate

Thrust force

I VV : _ _ V

ex _ t)

<:

dM.5
dM =

_ 1 exA

V 2

V (? X

V

d M

dt

_F = - --

-1 A

_ -77 _t-TZa

2)i/2
Vex

2
C

<:

1 d M A

-_ dt A

(it Vux 1/2 Vex

(,

\ -1

re t

<: is the rest mass (i e. mass
where M A ()r \1A • ,

if %-_= O) of the v()cket,

1
._ : c is the speed of light i.u........ 7} j

I ---2
t

vacuo, \F is the exhaust velocity, _ is the
ex

wdoeitv of the r,_c:ket and f its thrust acceleration.

V
exA

d \I
dM A

=

d M
A

d M A dt A

dt A
112

- d \I '-%

m5 : dr& VexA :

(I \l
A

dl A

_- Vex2,lc2-'_Z/_'exA
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a. Useof simplifiedforcemodels

Inthediscussionof thevariousforcernodels
it is pointedoutwhatapproximationshavebeen
madein each.Onewouldexpecttouseasimpler
forcemodelfor preliminarytrajectory selection
and then use a more complicated model to verify

some more desirable trajectories. It is to be

expected that the many-body force model with the

inclusion of nongravitational forces yields the
most accurate trajectory. V_ith each force model,

many questions of computer simulation arise, such

as the type of buildup and tail -off of thrust, the

drag and lift coefficients, the reflectivity of the
vehicle skin, the type of interaction between

neutral and charged particles witt_ the skin, etc.

The computer simulation of some forces presents

major problems and may be costly in programming

and computation time.

b. Use of approximate physical constants

With each force there are in general some

associated constants. Thus we need the gravita-

tional constants of the moon_ = GM([, the

earth/a@ = GIVI_, the mean angular velocity of

the moon co_, constants associated with the ex-

pansion of the earth' s and the moon I s gravitational

potentials, the variation of atmospheric tempera-
ture and molecular weight with altitude above the

earth and many more constants depending on the
force model. Each one of these constants is known

imprecisely; this fact will cause errors in the com-

puted trajectories There should ideally be a
balance between our knowledge of these constants

and the type of force model to be used on the com-

puter. The constants in any force model should
be consistent among each other; and if they are

not, a justification of each such departure should

be given.

c. Errors in the lunar, solar, and planetary

positions

The coordinates of celestial bodies have been

obtained at the US Naval Observatory by use of

general perturbation theories with certain values

of physical constants which may differ from the
values of the same constants used in the tra-

jectory program,

d. Errors in initial conditions

The initial conditions of the vehicle, the

celestial bodies and the launch site on earth as

used in the computer simulation may be in error.

c. Computational errors

The programming of a trajectory computer

program requires careful attention to the ac-
cumulation of error during the numerical inte-

gration of the equations of motion. Computational
errors include those due to round-off, truncation,

approximation, cancellation, and due to the

presence of small divisors.

f. }luman error

Last, but not least there is the possibility

of human error in the handling of the data from

assembling the machine input to the evaluation

of the trajectory output.

C. THE VOICE TECIINIQUE

The discussion of the accuracy of computed

trajectories in the preceding subsection pointed
out the need of a simplified force model for

parametric studies of lunar trajectories. The

n-body force model is very complex because of

the number of trajectory variables involved and
the lack of exact solutions to the equations of

motion. In fact, even the restricted three-body

model (Subsection B-l) does not afford solutions

for lunar trajectories efficiently. Althougb com-

puter programs exist that determine trajectories
by use of various integration schemes, the inputs

to these programs are the unknown position and

velocity of the spacecraft at some time. Since

lunar trajectories are very sensitive to these
initial conditions, these unknowns must be

estimated very accurately. For example, a

typical trajectory that passes behind the moon
and returns to earth (circumlunar) requires an

initial speed at the earth of approximately 11,000
m/see. Perturbing this speed by 1 m/scc can

change pericynthion (closest approach to moon)

altitude by hundreds of kilometers, and the
return perigee by thousands of kilometers. Thus,

systematic studies using computer programs that

integrate numerically can become long, tedious,
and expensive, if the initial conditions are de-

termined by a trial and error approach. The most

desirable means around this problem is via a

simplified technique that is relatively accurate and

free of integration logic.

1. Description

To this end, a three-dimensional patched

conic program using a succession of two-body

trajectories, and with a transition region similar

to the gravisphere transition to lunar influence
was developed, ftowever, instead of a gravisphere

or sphere of influence, a lunar "volume of in-
fluence" is used which is defined by the locus of

points that satisfy rM/r E = 0.175 (see Subsection

B-lb). This volume, empirically determined to

give the best results, is a sphere as was shown
in the referenced subsection.

The following assumptions are made in any

patched conic program: The earth and moon are
spherical homogeneous bodies with the moon

rotating about the earth,s center. Motion within
the lunar volume of influence is free of gravi-

tational forces from the earth and sun. Likewise,

motion toward or away from the volume in free of

forces due to the moon and sun. Thus, a tra-

jectory in this earth-moon model can be described

by the classic two-bo:]y equations which are
"patched" at the boundary of the lunar volume of

influence.
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Figure 4 presents a definition of the terms and

the coordinate system used in the Voice (Volume

of Influence-Calculated Envelopes) trajectory pro-
gram. A geocentric coordinate system is em-

ployed with the positive x E-axis defined by the

vector lying along the intersection of the trans-
lunar trajectory plane and the moon,s orbital

plane in the direction of the moon. Tile z E-axis

is normal to the moon,s orbitalplane, i.e., in

the direction of the angular momentum vector

of the moon with the YE-axis completing the right-

handed system in the MOP. The lead angle of

the moon, _ *, is measured from the xE-axis to

the position of the moon at the time of injection.

The relatiw? inclination of the translunar tra-

jectoryplane iVT L and the transearth trajectory

plane iVT E to the MOP are determined at the

time of injection and volume of influence exit,

respectively.

The program first computes the translunar

trajectory to the point of entry into the volume

of influence, at which point the velocity and
position vectors are determined relative to the

geocentric coordinate system. At volume entry
the velocity and position vectors are transformed
to a selenocentric reference frame as illustrated

in the following sketch for the simple case of a

trajectory in the MOP (iVT L = 0):

Lunar%

Y_ Motion _ x

where VEA is the velocity of the space vehicle

and VE( [ is that of the moon relative to earth.

From the preceding sketch it can be seen that the
velocity of the space vehicle relative to the moon

VMA is given by VMA = VEA - VE_ .

The geocentric vehicle position and velocity at entry

into the lunar volume of influence (rEA , VEz x )

are transformed to a selenocentric coordinate

system x M YM ZM' i,c. to (rMA , VMA } for the

trajectory computation around the moon. The

XM YM ZM coordinate system is illustrated in the

following sketch:

Dl/u

'1

"M

i'm I
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The zM-axis is in the direction of \:MAx r M

or perpendic_dar to tim trajectory plane around

the moon. The YM axis defines the intersection

between |he trajectory or x M YM-plane and MOP

(or the x E yE-plane), with the x M axis completing

the right-handed coordinate system. The in-
clination i of the trajectory to the moon,s

m

orbital plane inside th(_ volume of influence is

given by i m = cos-1 Knowing the
\ M E /

direction of the earth-moon line EML at the

time of entry into the volume, the time to reach

pericynthion and the moon,s rotational rate about

the earth, _1I ' the orientation 0 M of the lunar

trajectory with respect to the earth-moon line

EML at pericynthion can be found.

Upon leaving the hmar volume of influence,

the vehicle position and velocity are again trans-

formed to the x EYE ZE coordinate system and

the transearth trajectory is then computed.

The above discussion acquaints the reader

with the technique. In order to understand
exactly what tile Voice program can do, one

must look at the inputs and outputs. The following

trajectory variables are specified in the input for

circumlunar mission trajectories:

(1) Earth launch base position (geocentric

latitude and longitude).

(2) Injection altitude he0 and flight path

angle "%0 for the translunar trajectory.

(3) Pericynthion altitude hpL , closest

approach to moon.

(4) Return vacuum perigee altitude hpE

or the closest approach to the earth if

the earth,s atmosphere is neglected.

(5) Translunar trajectory inclination

iVT L to the MOP.

(6) Transearth trajectory inclination

iVT E to the MOP.

(7) Declination of the moon when the space-

craft is at pericynthion.

(8) Return base geocentric latitude.

As can be seen, the major characteristics of

the entire lunar trajectory are specified. The

essence of the program is thus a matter of

Peration within the program in order to satisfy
these desired characteristics or trajectory

variables, thus allowing one to explicitly state
mission parameters as input.

The program output consists of other re-

quirements to fulfill the mission and additional

pertinent data as listed below:

(i) Injection position _0 anti geocentric

latituJ.e and longitude. The injection

position _0 is measured from the

MOP along the translunar trajectory

plane to the point of injection.

(2) Injection velocity VEA0 "

(3) Lunar lead angle ,_, _:: at injection.

(4) Position and velocity of the space

vehicle at pericynthion.

(5) Inclination i of the vehicle trajectory
m

to the MOP in the lunar volume of
influence.

(6) Orientation 0 M of the trajectory with

respect to the EML at pericynthion.

(7) Position and velocity at return vacuum

perigee.

(8) Flight time to pericynthion and to

return vacuum perigee.

(9) Longitude of first two intersections of

the return trajectory.

(10) t_ange angle in parking orbit and range

to return base latitude extended beyond

perigee to the return base latitude,

Another program exists using the same

principles as the Voice technique wherein one-

way transearth trajectories from lunar orbit

can be determined. Entitled, "Ejection from

Lunar Orbit, " this program has tile following

inputs and outputs which are illustrated in the

following sketch:

Inputs:

(I) Inclination of the circular lunar orbit

to the moon,s orbital plane i m

The program is restricted to circular
lunar orbits.

(2) Orientation of the circular lunar orbit

with respect to the earth-moon line

0 M .

(3) Altitude of the circular lunar orbit

hpL •

(4) Ejection point from lunar orbit i_M0 .

(5) Flight path angle at ejection YM0 "

(6) Desired vacuum perigee altituJe bpE •

Outputs:

(1) Ejection velocity VM/X 0 "

(2) Transearth inclination iVT E .
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(3) Timeto returnto vacuumperigee.
(4) Positionandvelocityatperigee.

Withproperinterpretationthisprogramis
alsousedfor one-waytranslunartrajectories.
Againnotetheeasebywhichspecificmission
requirementscanbeobtained.

To

Earth

lunar satellite

I I A

2. Com:_ari._rm with Inte.gzated Trajectories

The Voice technique, although an approxi-

mation to a complex physical model, compares

very favorably with integrated restricted three-

body and n-body trajectories. The following
table illustrates this point by comparing two

typical integrated trajectories (one restricted

3-body and one n-body) with their respective Voice

trajectories. The intt-grated trajectories were

obtained by an iterative scheme utilizing the

Voice program. The tabie, which is self-ex-

planatory, shows that there is good agreement
between the initial conditions obtained with the

Voice technique and the initial conditions for

the actual integrated trajectory. All mission

constraints are closely matched, thereby proving
trends established by Voice.

Thus the Voice technique can be used with

reasonable accuracy to perform parametric studies

of lunar trajectory characteristics. In addition
the technique can be used for obtaining actual

n-body integrated trajectories.

Further comparisons between Voice tra-

jectory characteristics and those using the
restricted 3-body and n-body force models for

various types of lunar trajectories are given in

Chapters VI and IX.

Comparison oi Voict_ Trajectories with Integrated Trajectories

Restricted Force Model3-Body

Comparison

Voice

Inject North--Direct

Item I Integrated
_ I 1 .......

Altitude (he0) km 2_I. 648 231. 048 182.88Velocity (VEA 0) m ,' st'c 10905. 545 10903. 951 10!162. 32

Injection into Flight path angle (,re0) d_ g t 0 3. O
translunar orbit

Inclination to MOP (iVT L) deg 30. 30.

Injection position (40) deg 12, 259 ll. 94

n-ltody Force Model
Coin _arison

Voice Integrated

182. 88

2. 6682

29, 2495 _*

13. 502125

10963.786

2.6682

29.3822*

13.198678

Lunar lead angle (,$ *) deg 44. 0596 L 45, 0258 37. 3314 38. 02945

/
At moon Pericynthion altitude (hpi) km 1852. 1851.44 185. 015 186. 867

t| Va .... perigee altitude (hpF) km /45.72 46.086 35.81 : .5

Total flight time (t) hr , 154. 31 154. 3 i 147.73g 147. 078

/

_ Di .... i .... d mode of return I i)irect f ...... th L Direct f ......... th [ l)ireet f ...... th j I)ire, et f ........ th

[ *iVT L and iVT F are relative to earth .qLt _toria[ !Jiallc, i.e., they a 'e actually

_ . 1_ VE 1V'I'EQ" _ _ - _L and resl)eettvely.

D. ADDITIONAL CLASS OF

CIRCUIVILUNAR ORBITS

A new class of circumlunar orbits, i.e., peri-

odic circumlunar trajectories, has been described

and an outline of the proof of existence for these

orbits had been given by Arenstorf (Ref. 27) just

as the Lunar Flight Manual went to press. These
orbits were obtained for the restricted thrre-body

problem, and they exist for' small mass ratios of
the two primary bodies. The circumlunar orbits

exist near Keplerian, or restricted two-body,

ellipses which represent a zero mass ratio be-

tween the two primary bodies or the existerlC_ of

only one primary body. Two typical circumlunar

orbits as calculated by Arenstorf have been plot-
ted below for the earth-moon-space vehicle sys-

tem in rotating XRYlR coordinates:

By a judicious choice of trajectory parameters
these orbits can be made to pass arbitrarily close

to the earth and moon, and small perturbations

from forces arising outside of the framework of

the restricted three-body problem can be counter'-

acted by thrust. Reference 27 suggests the use
of circumlunar orbits for shuttling passengers and

materials from the vicinity of the earth to the vi-

cinity of the moor_.
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TABLE 1

Transformations Between Position and

Velocity Components of the

Restricted Three -Body
Problem

Define the following rotation matrices:

I!OS (¢ + _o®_t) - sin (¢ + _o_t) !1
in (¢ + _o(_ t) cos (¢0 + _e_t)

os (¢ +_(_ t) sin (¢ + _@_t) O]Jsin ($ + _o(_ t) COSo ($ + _o(_ t) O1

Position and velocity components in the three

nonrotating coordinate systems are related to the
rotating systems by the transformations:

Y0 = YR

0 xH

e

YO =

_o

Xe}Ye = "t

z e

o

Ye =

z e

YH

z R

{xm}
Z m R

• {.Ym = YR + ¢°_ q [xR

m _R

- %4

and the inverse transformations must be given

since the initial conditions are usually given in
nonrotating coordinates, while the computation

is performed in rotating coordinates:

YR = Y0

R z0

;'R ×0 + _e_ Yo
.

YR = YO - _¢ x

_R o

YR = ,

z R

YR = I T 2l Yrn '

z R z m
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xI xm +_®C

-'Wl'he coordinate systems are defined I_y tile

sketch on page IV-20.

TABLE 2

Transformation t_ctween Body-Axes and Vehicle-Centered Equatorial Coordinates

The coordinates in the body-axis (x b, Yb' Zb) coordinate system with origin at tile instantaneous center

of mass of the vehicle are related to nonrotating coordinates (x_, _, _O, 5' z(_, 5 ) fixed in the vehicle

with origin at the instantaneous center of mass and axes parallel to the x G, ,_O, zo directions by the

relations (where the order of rotation is 4, 0, _b around the z, y, and x axes, respectively)

Xb

z b

f x_,/x_

Y@, A(

z_, AJ

oF

Yb

z b

1001i:os 0sin01.rc°s 0]Ix. }0 cos ¢ sin 9 I 0 /- sin ¢ cos ¢ 0 < Y@,A

0 - sin9 cos _ L sin 0 0 cos 0 L 0 0 I z@,

The inverse transformation is given by

'] Y®'ff = _i, (¢t -1 IT(e t -1 _F (¢_-1 Yb

tZe, __j _b

or

Ix I:':Jk I[:I{}Fcos _ - sin_ 0 cos 0 0 sin 0 1 0 0 x b

y@, = in¢ cos_ 1 0 cos ¢ - sin ¢ Yb

_z@, 0 sin 0 0 cos 0 sin ¢ cos ¢ z b

or, when the matrix multiplication is performed,

I X_D' 'A_Ye, =

t %, _J
cos ¢ cos 0} (cos + sin 0 sin ¢ - sin _J cos _)
sin@ cos 0) (sin ¢ sin 0 sin ¢+ cos ¢ cos Q)

- sin U) (cos 0 sin o)

(COS_P sine cos ¢ + sin<P sin q))]_x_

(sin _b sin 0 cos o- eosd_ sin ¢)_tfl

(cos 0 cos o) J_h)
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This can also be written formally in the form of direction cosines

lix@, A mll

_Y@ /x_ = _12 m12 n12 1 Yb

LZ® /,J 13 m13 nl3_J Zb

which are given by direct comparison of the
preceding two equations

Ill = cos _ cos 0

_12 = sin _ cos O

_13 . - sin 0

mll = cos _ sin 0 sin _ - sin _ cos ¢

m12 = sin @ sin 0 sin ¢ + cos _ cos ¢

m13 = cos 0 sin ¢

nll = cos ¢ sin O cos_ + sin# sin ¢>

n12 = sin _ sin 0 cos ¢> - cos _ sin ¢

n13 = cos 0 cos

and must satisfy

2
_112+ roll 2 + nll = 1

2 2 2 2I12 + m 1 + n12 = 1

2 m132 2 = 1_13 + + n13

and

fll mll + _12 m12 + _13 m13 = 0

roll nil + m12 n12 + m13 n13 = 0

nll _11 + n12 _12 + n13 _13 = 0

_11 _12 + mll m12 + nll n12 = 0

_12 _13 + m12 m13 + n12 n13 = 0

113 t11 + m13 mll + n13 nll = 0

_ii _12 _13

mll m12 m13

nil n12 n13

2
ell + _122 + _132

2 m122 2mll + + m13

2 2
n11 + n122 + n13

= 1

= 1

= 1

= 1
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Fig. i. T ical Earth-Moon Trajector in NonrotatinK. x _ e Coordinates

Ye (tO3ka)

iOO 200 300 _0

<
I

O7

_I00

o

N

200

,_Earth

O- - . ,

20 hr

30 hr

/

50 hr .,

_'_ 60 hr//

M on at 70 hr
/

/

/
/

; Moon at 60 hr
/

/
/

,_ Moon st _C hr



i in Rotatin6 x _ Coordinates

............ ! ". ...........

!

C_

DO

[

IQO_ _

J_._

.._ &0

rol
0
,=4

)0 hr 40 h_

20 hr ...... ..-_D-......._ ....

Eart

0 < 2hr /
2OO 3OO

-%

\

70 hr

Moo. _00



u_

I--I



I

CXI

\
\

\

\

lJ
IB

F_G 4 Yo_c_" _EoI,It:T_,'I"










